5,392 research outputs found

    Memory fMRI predicts verbal memory decline after anterior temporal lobe resection.

    Get PDF
    To develop a clinically applicable memory functional MRI (fMRI) method of predicting postsurgical memory outcome in individual patients

    Structural correlates of impaired working memory in hippocampal sclerosis

    Get PDF
    PURPOSE: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. METHODS: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. KEY FINDINGS: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. SIGNIFICANCE: Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS

    Sideband cooling of small ion Coulomb crystals in a Penning trap

    Get PDF
    We have recently demonstrated the laser cooling of a single 40 Ca + ion to the motional ground state in a Penning trap using the resolved-sideband cooling technique on the electric quadrupole transition S 1/2 ↔ D 5/2 . Here we report on the extension of this technique to small ion Coulomb crystals made of two or three 40 Ca + ions. Efficient cooling of the axial motion is achieved outside the Lamb-Dicke regime on a two-ion string along the magnetic field axis as well as on two- and three-ion planar crystals. Complex sideband cooling sequences are required in order to cool both axial degrees of freedom simultaneously. We measure a mean excitation after cooling of n COM for the centre of mass (COM) mode and n B for the breathing mode of the two-ion string with corresponding heating rates of 11(2)s -1 and 1(1)s -1 at a trap frequency of 162 kHz. The occupation of the ground state of the axial modes (n tilt = n COM = 0) is above 75% for the two-ion planar crystal and the associated heating rates 0.8(5)s -1 at a trap frequency of 355 kHz

    Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study

    Get PDF
    Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery

    A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy.

    Get PDF
    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment

    Designing an information system for updating land records in Bangladesh: action design ethnographic research (ADER)

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Information Systems (IS) has developed through adapting, generating and applying diverse methodologies, methods, and techniques from reference disciplines. Further, Action Design Research (ADR) has recently developed as a broad research method that focuses on designing and redesigning IT and IS in organizational contexts. This paper reflects on applying ADR in a complex organizational context in a developing country. It shows that ADR requires additional lens for designing IS in such a complex organizational context. Through conducting ADR, it is seen that an ethnographic framework has potential complementarities for understanding complex contexts thereby enhancing the ADR processes. This paper argues that conducting ADR with an ethnographic approach enhances design of IS and organizational contexts. Finally, this paper aims presents a broader methodological framework, Action Design Ethnographic Research (ADER), for designing artefacts as well as IS. This is illustrated through the case of a land records updating service in Bangladesh

    Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evolutionary Algorithms

    Get PDF
    Evolution-in-Materio uses evolutionary algorithms (EA) to exploit the physical properties of unconfigured, physically rich materials, in effect transforming them into information processors. The potential of this technique for machine learning problems is explored here. Results are obtained from a mixture of single walled carbon nanotubes and liquid crystals (SWCNT/LC). The complex nature of the voltage/current relationship of this material presents a potential for adaptation. Here, it is used as a computational medium evolved by two derivative-free, population-based stochastic search algorithms, particle swarm optimisation (PSO) and differential evolution (DE). The computational problem considered is data classification. A custom made electronic motherboard for interacting with the material has been developed, which allows the application of control signals on the material body. Starting with a simple binary classification problem of separable data, the material is trained with an error minimisation objective for both algorithms. Subsequently, the solution, defined as the combination of the material itself and optimal inputs, is verified and results are reported. The evolution process based on EAs has the capacity to evolve the material to a state where data classification can be performed. PSO outperforms DE in terms of results’ reproducibility due to the smoother, as opposed to more noisy, inputs applied on the material
    corecore