44,766 research outputs found

    Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2_2Ti2_2O7_7 in Magnetic Field

    Full text link
    The frustrated pyrochlore magnet Yb2_2Ti2_2O7_7 has the remarkable property that it orders magnetically, but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe in addition to dispersive magnons also a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low and high field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set we re-evaluate the spin Hamiltonian finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.Comment: 5 pages main text + 19 pages supplemental materia

    Chemical equilibrium and stable stratification of a multi-component fluid: thermodynamics and application to neutron stars

    Get PDF
    A general thermodynamic argument shows that multi-component matter in full chemical equilibrium, with uniform entropy per baryon, is generally stably stratified. This is particularly relevant for neutron stars, in which the effects of entropy are negligible compared to those of the equilibrium composition gradient established by weak interactions. It can therefore be asserted that, regardless of the uncertainties in the equation of state of dense matter, neutron stars are stably stratified. This has important, previously discussed consequences for their oscillation modes, magnetic field evolution, and internal angular momentum transport.Comment: AASTeX, 8 pages, including 1 PS figure. Accepted for publication in The Astrophysical Journa

    Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2_2O6_6 in a transverse field: Geometric frustration and quantum renormalization effects

    Full text link
    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2_2O6_6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.Comment: 11 pages, 6 figures. Updated references. Minor changes to text and figure

    Self-gravitating astrophysical mass with singular central density vibrating in fundamental mode

    Full text link
    The fluid-dynamical model of a self-gravitating mass of viscous liquid with singular density at the center vibrating in fundamental mode is considered in juxtaposition with that for Kelvin fundamental mode in a homogeneous heavy mass of incompressible inviscid liquid. Particular attention is given to the difference between spectral formulae for the frequency and lifetime of ff-mode in the singular and homogeneous models. The newly obtained results are discussed in the context of theoretical asteroseismology of pre-white dwarf stage of red giants and stellar cocoons -- spherical gas-dust clouds with dense star-forming core at the center.Comment: Mod. Phys. Lett. A, Vol. 24, No. 40 (2009) pp. 3257-327

    Quantum Monte Carlo calculations of spectroscopic overlaps in A7A \leq 7 nuclei

    Full text link
    We present Green's function Monte Carlo calculations of spectroscopic overlaps for A7A \leq 7 nuclei. The realistic Argonne v18 two-nucleon and Illinois-7 three-nucleon interactions are used to generate the nuclear states. The overlap matrix elements are extrapolated from mixed estimates between variational Monte Carlo and Green's function Monte Carlo wave functions. The overlap functions are used to obtain spectroscopic factors and asymptotic normalization coefficients, and they can serve as an input for low-energy reaction calculations

    Diurnal variation in harbour porpoise detection – potential implications for management

    Get PDF
    Peer reviewedPublisher PD

    Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator

    Full text link
    We experimentally demonstrate electromagnetically induced transparency and light storage with ultracold 87Rb atoms in a Mott insulating state in a three dimensional optical lattice. We have observed light storage times of about 240 ms, to our knowledge the longest ever achieved in ultracold atomic samples. Using the differential light shift caused by a spatially inhomogeneous far detuned light field we imprint a "phase gradient" across the atomic sample, resulting in controlled angular redirection of the retrieved light pulse.Comment: 4 pages, 4 figure

    ‘It’s a different world out there’: Improving how academics prepare health science students for rural and Indigenous practice in Australia.

    Get PDF
    Rural and Aboriginal and Torres Strait Islander (Indigenous) health content in undergraduate health science curricula in Western Australia has been limited. In 2008, a three-and-a-half-day, rurally-based, intercultural and inter-disciplinary programme for academics from three universities aimed to improve how academics prepared health science students for work in this area. Situated learning theory underpinned the programme's design, which prioritised context and participation in the construction of knowledge: academics lived ‘on country’ and participated in the lived experience of a rural and Indigenous community. Semi-structured phone interviews with 21 academics four months later indicated this approach had radically changed thinking and led to a desire to improve rural and Indigenous health and teaching practice. Targeting academics to learn about rural and Indigenous health in situ is one promising strategy for improving undergraduate health science education in this priority area
    corecore