481 research outputs found

    Using Microbial Source Tracking Techniques to Identify Fecal Indicator Bacteria in the Horse Creek Watershed in Aiken, SC

    Get PDF
    2012 S.C. Water Resources Conference - Exploring Opportunities for Collaborative Water Research, Policy and Managemen

    Integrating ecology into macroevolutionary research

    Get PDF
    On 9 March, over 150 biologists gathered in London for the Centre for Ecology and Evolution spring symposium, ‘Integrating Ecology into Macroevolutionary Research’. The event brought together researchers from London-based institutions alongside others from across the UK, Europe and North America for a day of talks. The meeting highlighted methodological advances and recent analyses of exemplar datasets focusing on the exploration of the role of ecological processes in shaping macroevolutionary patterns

    Python game design for children: Games and programming resources

    Get PDF
    This project is focused on helping middle and high school students learn how to program and think computationally. We are creating a set of resources that will be used by the students to understand programming, Python, and PyGames concepts. These resources will be used for teaching the two one-week summer camps through Clemson University\u27s Pre-Collegiate programs in June and July 2014. This camp has been offered at Georgia Tech and Clemson University for two summers using a drag and drop visual programming language to help students create games. The instructors have found that the camp attendees do not find the visual programming language to be challenging enough. Thus, we are designing curricula to teach introductory computing concepts with the Python and PyGames programming languages in a fun and creative way and to give students the opportunity to learn to design and program their own games. We are also designing and creating our own games as a way to learn the language and have examples for the kids in the camp to build upon. This project was initiated this semester and we will pilot resources this summer during the two weeks of camp. We will showcase the initial games and resources created for this project

    Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase

    Get PDF
    The enzymatic methylation of inorganic As (iAs) is catalyzed by As(+3 oxidation state)-methyltransferase (AS3MT). AS3MT is expressed in rat liver and in human hepatocytes. However, AS3MT is not expressed in UROtsa, human urothelial cells that do not methylate iAs. Thus, UROtsa cells are an ideal null background in which the role of iAs methylation in modulation of toxic and cancer-promoting effects of this metalloid can be examined. A retroviral gene delivery system was used in this study to create a clonal UROtsa cell line (UROtsa/F35) that expresses rat AS3MT. Here, we characterize the metabolism and cytotoxicity of arsenite (iAsIII) and methylated trivalent arsenicals in parental cells and clonal cells expressing AS3MT. In contrast to parental cells, UROtsa/F35 cells effectively methylated iAsIII, yielding methylarsenic (MAs) and dimethylarsenic (DMAs) containing either AsIII or AsV. When exposed to MAsIII, UROtsa/F35 cells produced DMAsIII and DMAsV. MAsIII and DMAsIII were more cytotoxic than iAsIII in UROtsa and UROtsa/F35 cells. The greater cytotoxicity of MAsIII or DMAsIII than of iAsIII was associated with greater cellular uptake and retention of each methylated trivalent arsenical. Notably, UROtsa/F35 cells were more sensitive than parental cells to the cytotoxic effects of iAsIII but were more resistant to cytotoxicity of MAsIII. The increased sensitivity of UROtsa/F35 cells to iAsIII was associated with inhibition of DMAs production and intracellular accumulation of MAs. The resistance of UROtsa/F35 cells to moderate concentrations of MAsIII was linked to its rapid conversion to DMAs and efflux of DMAs. However, concentrations of MAsIII that inhibited DMAs production by UROtsa/F35 cells were equally toxic for parental and clonal cell lines. Thus, the production and accumulation of MAsIII is a key factor contributing to the toxicity of acute iAs exposures in methylating cells

    Mechanisms of decoherence in weakly anisotropic molecular magnets

    Full text link
    Decoherence mechanisms in crystals of weakly anisotropic magnetic molecules, such as V15, are studied. We show that an important decohering factor is the rapid thermal fluctuation of dipolar interactions between magnetic molecules. A model is proposed to describe the influence of this source of decoherence. Based on the exact solution of this model, we show that at relatively high temperatures, about 0.5 K, the quantum coherence in a V15 molecule is not suppressed, and, in principle, can be detected experimentally. Therefore, these molecules may be suitable prototype systems for study of physical processes taking place in quantum computers.Comment: 4 pages RevTeX, 1 figure (PostScript

    Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    Get PDF
    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [73As]arsenite (iAsIII; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 hours and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAsIII to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAsIII than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAsIII was associated with inhibition of DMAs production by moderate concentrations of iAsIII and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences in the hepatocyte capacity to methylate iAs

    Molecular Mechanisms of the Diabetogenic Effects of Arsenic: Inhibition of Insulin Signaling by Arsenite and Methylarsonous Acid

    Get PDF
    BACKGROUND: Increased prevalences of diabetes mellitus have been reported among individuals chronically exposed to inorganic arsenic (iAs). However, the mechanisms underlying the diabetogenic effects of iAs have not been characterized. We have previously shown that trivalent metabolites of iAs, arsenite (iAs(III)) and methylarsonous acid (MAs(III)) inhibit insulin-stimulated glucose uptake (ISGU) in 3T3-L1 adipocytes by suppressing the insulin-dependent phosphorylation of protein kinase B (PKB/Akt). OBJECTIVES: Our goal was to identify the molecular mechanisms responsible for the suppression of PKB/Akt phosphorylation by iAs(III) and MAs(III). METHODS: The effects of iAs(III) and MAs(III) on components of the insulin-activated signal transduction pathway that regulate PKB/Akt phosphorylation were examined in 3T3-L1 adipocytes. RESULTS: Subtoxic concentrations of iAs(III) or MAs(III) had little or no effect on the activity of phosphatidylinositol 3-kinase (PI-3K), which synthesizes phosphatidylinositol-3,4,5-triphosphate (PIP(3)), or on phosphorylation of PTEN (phosphatase and tensin homolog deleted on chromosome ten), a PIP(3) phosphatase. Neither iAs(III) nor MAs(III) interfered with the phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK-1) located downstream from PI-3K. However, PDK-1 activity was inhibited by both iAs(III) and MAs(III). Consistent with these findings, PDK-1-catalyzed phosphorylation of PKB/Akt(Thr308) and PKB/Akt activity were suppressed in exposed cells. In addition, PKB/Akt(Ser473) phosphorylation, which is catalyzed by a putative PDK-2, was also suppressed. Notably, expression of constitutively active PKB/Akt restored the normal ISGU pattern in adipocytes treated with either iAs(III) or MAs(III). CONCLUSIONS: These results suggest that inhibition of the PDK-1/PKB/Akt-mediated transduction step is the key mechanism for the inhibition of ISGU in adipocytes exposed to iAs(III) or MAs(III), and possibly for impaired glucose tolerance associated with human exposures to iAs
    corecore