141 research outputs found

    Extension of the osp(m|n)~ so(m-n) Correspondence to the Infinite-Dimensional Chiral Spinors and Self Dual Tensors

    Get PDF
    The spinor representations of the orthosymplectic Lie superalgebras osp(m|n) are considered and constructed. These are infinite-dimensional irreducible representations, of which the superdimension coincides with the dimension of the spinor representation of so(m-n). Next, we consider the self dual tensor representations of osp(m|n) and their generalizations: these are also infinite-dimensional and correspond to the highest irreducible component of the pthp^{th} power of the spinor representation. We determine the character of these representations, and deduce a superdimension formula. From this, it follows that also for these representations the osp(m|n)~ so(m-n) correspondence holds

    U-duality in three and four dimensions

    Full text link
    Using generalised geometry we study the action of U-duality acting in three and four dimensions on the bosonic fields of eleven dimensional supergravity. We compare the U-duality symmetry with the T-duality symmetry of double field theory and see how the SL(2)⊗SL(3)SL(2)\otimes SL(3) and SL(5) U-duality groups reduce to the SO(2,2) and SO(3,3) T-duality symmetry groups of the type IIA theory. As examples we dualise M2-branes, both black and extreme. We find that uncharged black M2-branes become charged under U-duality, generalising the Harrison transformation, while extreme M2-branes will become new extreme M2-branes. The resulting tension and charges are quantised appropriately if we use the discrete U-duality group Ed(Z)E_d(Z).Comment: v1: 35 pages; v2: minor corrections in section 4.1.2, many references added; v3: further discussion added on the conformal factor of the generalised metric in section 2 and on the Wick-rotation used to construct examples in section

    An Alternative To The Horizontality Condition In Superfield Approach To BRST Symmetries

    Full text link
    We provide an alternative to the gauge covariant horizontality condition which is responsible for the derivation of the nilpotent (anti-)BRST symmetry transformations for the gauge and (anti-)ghost fields of a (3 + 1)-dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. The above covariant horizontality condition is replaced by a gauge invariant restriction on the (4, 2)-dimensional supermanifold, parameterized by a set of four spacetime coordinates x^\mu (\mu = 0, 1, 2, 3) and a pair of Grassmannian variables \theta and \bar\theta. The latter condition enables us to derive the nilpotent (anti-)BRST symmetry transformations for all the fields of an interacting 4D 1-form non-Abelian gauge theory where there is an explicit coupling between the gauge field and the Dirac fields. The key differences and striking similarities between the above two conditions are pointed out clearly.Comment: LaTeX file, 20 pages, journal versio

    Abelian 2-form gauge theory: superfield formalism

    Full text link
    We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for {\it all} the fields of a free Abelian 2-form gauge theory by exploiting the geometrical superfield approach to BRST formalism. The above four (3 + 1)-dimensional (4D) theory is considered on a (4, 2)-dimensional supermanifold parameterized by the four even spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of odd Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). One of the salient features of our present investigation is that the above nilpotent (anti-)BRST symmetry transformations turn out to be absolutely anticommuting due to the presence of a Curci-Ferrari (CF) type of restriction. The latter condition emerges due to the application of our present superfield formalism. The actual CF condition, as is well-known, is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that our present 4D Abelian 2-form gauge theory imbibes some of the key signatures of the 4D non-Abelian 1-form gauge theory. We briefly comment on the generalization of our supperfield approach to the case of Abelian 3-form gauge theory in four (3 + 1)-dimensions of spacetime.Comment: LaTeX file, 23 pages, journal versio

    Augmented Superfield Approach To Unique Nilpotent Symmetries For Complex Scalar Fields In QED

    Full text link
    The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)- and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4, 2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too.Comment: LaTeX file, 17 pages, journal versio

    Semi-infinite cohomology of W-algebras

    Full text link
    We generalize some of the standard homological techniques to \cW-algebras, and compute the semi-infinite cohomology of the \cW_3 algebra on a variety of modules. These computations provide physical states in \cW_3 gravity coupled to \cW_3 minimal models and to two free scalar fields.Comment: 15 page

    Algebraic structure of gravity in Ashtekar variables

    Get PDF
    The BRST transformations for gravity in Ashtekar variables are obtained by using the Maurer-Cartan horizontality conditions. The BRST cohomology in Ashtekar variables is calculated with the help of an operator δ\delta introduced by S.P. Sorella, which allows to decompose the exterior derivative as a BRST commutator. This BRST cohomology leads to the differential invariants for four-dimensional manifolds.Comment: 19 pages, report REF. TUW 94-1

    Superfield Approach to (Non-)local Symmetries for One-Form Abelian Gauge Theory

    Full text link
    We exploit the geometrical superfield formalism to derive the local, covariant and continuous Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformations and the non-local, non-covariant and continuous dual-BRST symmetry transformations for the free Abelian one-form gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Our discussion is carried out in the framework of BRST invariant Lagrangian density for the above 4D theory in the Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST charges (and the transformations they generate) are provided in the language of translations of some superfields along the Grassmannian directions of the six (4+2) 4 + 2)-dimensional supermanifold parametrized by the four spacetime and two Grassmannian variables.Comment: LaTeX file, 23 page
    • …
    corecore