308 research outputs found

    Wolf predation in the Burwash caribou herd, southwest Yukon

    Get PDF
    The role of wolf predation as a proximate mortality factor influencing caribou herd growth was assessed in the Burwash herd (400 animals) in the southwest Yukon between 1980 - 1982. Ten to 14 wolves in two packs preyed primarily on caribou (Rangifer tarandus caribou) and moose (Alces alces) with disproportionate consumption of caribou (relative to available biomass) in the rut and winter periods. Wolf predation was responsible for 72% of total annual mortality in 1980 - 1981 and 46% in 1981 - 1982. Losses due to human harvest varied between 7 to 13%. Additional limited data on climatic factors and winter forage indicated forage-climate were not major proximate mortality factors in 1980 - 1981, but that early-calving climate may have been a factor in increased calf mortality in 1982

    Physical Nucleon Properties from Lattice QCD

    Get PDF
    We demonstrate that the extremely accurate lattice QCD data for the mass of the nucleon recently obtained by CP-PACS, combined with modern chiral extrapolation techniques, leads to a value for the mass of the physical nucleon which has a systematic error of less than one percent.Comment: 4 pages, 2 figure

    Nucleon mass and pion loops: Renormalization

    Get PDF
    Using Dyson--Schwinger equations, the nucleon propagator is analyzed nonperturbatively in a field--theoretical model for the pion--nucleon interaction. Infinities are circumvented by using pion--nucleon form factors which define the physical scale. It is shown that the correct, finite, on--shell nucleon renormalization is important for the value of the mass--shift and the propagator. For physically acceptable forms of the pion--nucleon form factor the rainbow approximation together with renormalization is inconsistent. Going beyond the rainbow approximation, the full pion--nucleon vertex is modelled by its bare part plus a one--loop correction including an effective Δ\Delta. It is found that a consistent value for the nucleon mass--shift can be obtained as a consequence of a subtle interplay between wave function and vertex renormalization. Furthermore, the bare and renormalized pion--nucleon coupling constant are approximately equal, consistent with results from the Cloudy Bag Model.Comment: 14 pages, 6 figure

    Quark-meson coupling model for finite nuclei

    Full text link
    A Quark-Meson Coupling (QMC) model is extended to finite nuclei in the relativistic mean-field or Hartree approximation. The ultra-relativistic quarks are assumed to be bound in non-overlapping nucleon bags, and the interaction between nucleons arises from a coupling of vector and scalar meson fields to the quarks. We develop a perturbative scheme for treating the spatial nonuniformity of the meson fields over the volume of the nucleon as well as the nucleus. Results of calculations for spherical nuclei are given, based on a fit to the equilibrium properties of nuclear matter. Several possible extensions of the model are also considered.Comment: 33 pages REVTeX plus 2 postscript figure

    Strange nucleon form factors in the perturbative chiral quark model

    Get PDF
    We apply the perturbative chiral quark model at one loop to calculate the strange form factors of the nucleon. A detailed numerical analysis of the strange magnetic moments and radii of the nucleon, and also the momentum dependence of the form factors is presented.Comment: 18 pages, 6 figure

    Baryon masses from lattice QCD: Beyond the perturbative chiral regime

    Get PDF
    Consideration of the analytic properties of pion-induced baryon self-energies leads to new functional forms for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic behavior of chiral perturbation theory, the correct non-analytic behavior at the NπN \pi threshold and the appropriate heavy-quark limit. They involve only three unknown parameters, which may be obtained by fitting to lattice data. Recent dynamical fermion results from CP-PACS and UKQCD are extrapolated using these new functional forms. We also use these functions to probe the limit of applicability of chiral perturbation theory to the extrapolation of lattice QCD results.Derek B. Leinweber, Anthony W. Thomas, Kazuo Tsushima, and Stewart V. Wrigh

    Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry

    Full text link
    We investigate the dynamics of pairs of drops in microfluidic ladder networks with slanted bypasses, which break the fore-aft structural symmetry. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative drop spacing, enabling them to contract, synchronize, expand, or even flip at the ladder exit. Our experiments confirm all these behaviors predicted by theory. Numerical analysis further shows that while ladder networks containing several identical bypasses are limited to nearly linear transformation of input delay between drops, mixed combination of bypasses can cause significant non-linear transformation enabling coding and decoding of input delays.Comment: 4 pages, 5 figure

    Axial Vector Coupling Constant in Chiral Colour Dielectric Model

    Full text link
    The axial vector coupling constants of the β\beta decay processes of neutron and hyperon are calculated in SU(3) chiral colour dielectric model (CCDM). Using these axial coupling constants of neutron and hyperon, in CCDM we calculate the integrals of the spin dependent structure functions for proton and neutron. Our result is similar to the results obtained by MIT bag and Cloudy bag models.Comment: 9 pages, Latex file, no figure, to appear in Phys. Rev.
    corecore