639 research outputs found
Association of ultracold double-species bosonic molecules
We report on the creation of heterospecies bosonic molecules, associated from
an ultracold Bose-Bose mixture of 41K and 87Rb, by using a resonantly modulated
magnetic field close to two Feshbach resonances. We measure the binding energy
of the weakly bound molecular states versus the Feshbach field and compare our
results to theoretical predictions. We observe the broadening and asymmetry of
the association spectrum due to thermal distribution of the atoms, and a
frequency shift occurring when the binding energy depends nonlinearly on the
Feshbach field. A simple model is developed to quantitatively describe the
association process. Our work marks an important step forward in the
experimental route towards Bose-Einstein condensates of dipolar molecules.Comment: 5 pages, 4 figure
Double species condensate with tunable interspecies interactions
We produce Bose-Einstein condensates of two different species, Rb and
K, in an optical dipole trap in proximity of interspecies Feshbach
resonances. We discover and characterize two Feshbach resonances, located
around 35 and 79 G, by observing the three-body losses and the elastic
cross-section. The narrower resonance is exploited to create a double species
condensate with tunable interactions. Our system opens the way to the
exploration of double species Mott insulators and, more in general, of the
quantum phase diagram of the two species Bose-Hubbard model.Comment: 4 pages, 4 figure
Coherent optical transfer of Feshbach molecules to a lower vibrational state
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have
coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply
bound vibrational quantum level. Our measurements indicate a high transfer
efficiency of up to 87%. As the molecules are held in an optical lattice with
not more than a single molecule per lattice site, inelastic collisions between
the molecules are suppressed and we observe long molecular lifetimes of about 1
s. Using STIRAP we have created quantum superpositions of the two molecular
states and tested their coherence interferometrically. These results represent
an important step towards Bose-Einstein condensation (BEC) of molecules in the
vibrational ground state.Comment: 4 pages, 5 figure
Tuning the scattering length with an optically induced Feshbach resonance
We demonstrate optical tuning of the scattering length in a Bose-Einstein
condensate as predicted by Fedichev {\em et al.} [Phys. Rev. Lett. {\bf 77},
2913 (1996)]. In our experiment atoms in a Rb condensate are exposed to
laser light which is tuned close to the transition frequency to an excited
molecular state. By controlling the power and detuning of the laser beam we can
change the atomic scattering length over a wide range. In view of laser-driven
atomic losses we use Bragg spectroscopy as a fast method to measure the
scattering length of the atoms.Comment: submitted to PRL, 5 pages, 5 figure
Observation of heteronuclear atomic Efimov resonances
The Efimov effect represents a cornerstone in few-body physics. Building on
the recent experimental observation with ultracold atoms, we report the first
experimental signature of Efimov physics in a heteronuclear system. A mixture
of K and Rb atoms was cooled to few hundred nanoKelvins and
stored in an optical dipole trap. Exploiting a broad interspecies Feshbach
resonance, the losses due to three-body collisions were studied as a function
of the interspecies scattering length. We observe an enhancement of the
three-body collisions for three distinct values of the interspecies scattering
lengths, both positive and negative. We attribute the two features at negative
scattering length to the existence of two kind of Efimov trimers, namely KKRb
and KRbRb.Comment: 4 pages, 4 figure
Repulsively bound atom pairs: Overview, Simulations and Links
We review the basic physics of repulsively bound atom pairs in an optical
lattice, which were recently observed in the laboratory, including the theory
and the experimental implementation. We also briefly discuss related many-body
numerical simulations, in which time-dependent Density Matrix Renormalisation
Group (DMRG) methods are used to model the many-body physics of a collection of
interacting pairs, and give a comparison of the single-particle quasimomentum
distribution measured in the experiment and results from these simulations. We
then give a short discussion of how these repulsively bound pairs relate to
bound states in some other physical systems.Comment: 7 pages, 3 figures, Proceedings of ICAP-2006 (Innsbruck
Cruising through molecular bound state manifolds with radio frequency
The emerging field of ultracold molecules with their rich internal structure
is currently attracting a lot of interest. Various methods have been developed
to produce ultracold molecules in pre-set quantum states. For future
experiments it will be important to efficiently transfer these molecules from
their initial quantum state to other quantum states of interest. Optical Raman
schemes are excellent tools for transfer, but can be involved in terms of
equipment, laser stabilization and finding the right transitions. Here we
demonstrate a very general and simple way for transfer of molecules from one
quantum state to a neighboring quantum state with better than 99% efficiency.
The scheme is based on Zeeman tuning the molecular state to avoided level
crossings where radio-frequency transitions can then be carried out. By
repeating this process at different crossings, molecules can be successively
transported through a large manifold of quantum states. As an important
spin-off of our experiments, we demonstrate a high-precision spectroscopy
method for investigating level crossings.Comment: 5 pages, 5 figures, submitted for publicatio
Long Distance Transport of Ultracold Atoms using a 1D optical lattice
We study the horizontal transport of ultracold atoms over macroscopic
distances of up to 20 cm with a moving 1D optical lattice. By using an optical
Bessel beam to form the optical lattice, we can achieve nearly homogeneous
trapping conditions over the full transport length, which is crucial in order
to hold the atoms against gravity for such a wide range. Fast transport
velocities of up to 6 m/s (corresponding to about 1100 photon recoils) and
accelerations of up to 2600 m/s2 are reached. Even at high velocities the
momentum of the atoms is precisely defined with an uncertainty of less than one
photon recoil. This allows for construction of an atom catapult with high
kinetic energy resolution, which might have applications in novel collision
experiments.Comment: 15 pages, 8 figure
Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture
The route toward a Bose-Einstein condensate of dipolar molecules requires the
ability to efficiently associate dimers of different chemical species and
transfer them to the stable rovibrational ground state. Here, we report on
recent spectroscopic measurements of two weakly bound molecular levels and
newly observed narrow d-wave Feshbach resonances. The data are used to improve
the collisional model for the Bose-Bose mixture 41K87Rb, among the most
promising candidates to create a molecular dipolar BEC.Comment: 13 pages, 3 figure
- …