168 research outputs found
FACT - How stable are the silicon photon detectors?
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Since the properties of G-APDs depend on auxiliary
parameters like temperature, a feedback system adapting the applied voltage
accordingly is mandatory.
In this presentation, the feedback system, developed and in operation for
FACT, is presented. Using the extraction of a single photon-equivalent (pe)
spectrum as a reference, it can be proven that the sensors can be operated with
very high precision. The extraction of the single-pe, its spectrum up to
10\,pe, its properties and their precision, as well as their long-term behavior
during operation are discussed. As a by product a single pulse template is
obtained. It is shown that with the presented method, an additional external
calibration device can be omitted. The presented method is essential for the
application of G-APDs in future projects in Cherenkov astronomy and is supposed
to result in a more stable and precise operation than possible with
photo-multiplier tubes
FACT - Long-term stability and observations during strong Moon light
The First G-APD Cherenkov Telescope (FACT) is the first Cherenkov telescope
equipped with a camera made of silicon photon detectors (G-APD aka. SiPM).
Since October 2011, it is regularly taking data on the Canary Island of La
Palma. G-APDs are ideal detectors for Cherenkov telescopes as they are robust
and stable. Furthermore, the insensitivity of G-APDs towards strong ambient
light allows to conduct observations during bright Moon and twilight. This gain
in observation time is essential for the long-term monitoring of bright TeV
blazars. During the commissioning phase, hundreds of hours of data (including
data from the the Crab Nebula) were taken in order to understand the
performance and sensitivity of the instrument. The data cover a wide range of
observation conditions including different weather conditions, different zenith
angles and different light conditions (ranging from dark night to direct full
Moon). We use a new parmetrisation of the Moon light background to enhance our
scheduling and to monitor the atmosphere. With the data from 1.5 years, the
long-term stability and the performance of the camera during Moon light is
studied and compared to that achieved with photomultiplier tubes so far.Comment: 3 pages, 3 figures, FACT Contribution to the 33rd International
Cosmic Ray Conference (ICRC), Rio de Janeir
FACT - Long-term Monitoring of Bright TeV-Blazars
Since October 2011, the First G-APD Cherenkov Telescope (FACT) is operated
successfully on the Canary Island of La Palma. Apart from the proof of
principle for the use of G-APDs in Cherenkov telescopes, the major goal of the
project is the dedicated long-term monitoring of a small sample of bright TeV
blazars. The unique properties of G-APDs permit stable observations also during
strong moon light. Thus a superior sampling density is provided on time scales
at which the blazar variability amplitudes are expected to be largest, as
exemplified by the spectacular variations of Mrk 501 observed in June 2012.
While still in commissioning, FACT monitored bright blazars like Mrk 421 and
Mrk 501 during the past 1.5 years so far. Preliminary results including the Mrk
501 flare from June 2012 will be presented.Comment: 4 pages, 4 figures, presented at the 33rd ICRC (2013
FACT - Threshold prediction for higher duty cycle and improved scheduling
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Being operated during different light-conditions, the
threshold settings of a Cherenkov telescope have to be adapted to feature the
lowest possible threshold but also an efficient suppression of triggers from
night-sky background photons. Usually this threshold is set either by
experience or a mini-ratescan. Since the measured current through the sensors
is directly correlated with the noise level, the current can be used to set the
best threshold at any time. Due to the correlation between the physical
threshold and the final energy threshold, the current can also be used as a
measure for the energy threshold of any observation. This presentation
introduces a method which uses the properties of the moon and the source
position to predict the currents and the corresponding energy threshold for
every upcoming observation allowing to adapt the observation schedule
accordingly
FACT - Monitoring Blazars at Very High Energies
The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of
La Palma in October 2011 as a proof of principle for silicon based photosensors
in Cherenkov Astronomy. The scientific goal of the project is to study the
variability of active galatic nuclei (AGN) at TeV energies. Observing a small
sample of TeV blazars whenever possible, an unbiased data sample is collected.
This allows to study the variability of the selected objects on timescales from
hours to years. Results from the first three years of monitoring will be
presented. To provide quick flare alerts to the community and trigger
multi-wavelength observations, a quick look analysis has been installed on-site
providing results publicly online within the same night. In summer 2014,
several flare alerts were issued. Results of the quick look analysis are
summarized.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
Mirror Position Determination for the Alignment of Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with
large apertures to map the faint Cherenkov light emitted in extensive air
showers onto their image sensors. Segmented reflectors fulfill these needs
using mass produced and light weight mirror facets. However, as the overall
image is the sum of the individual mirror facet images, alignment is important.
Here we present a method to determine the mirror facet positions on a segmented
reflector in a very direct way. Our method reconstructs the mirror facet
positions from photographs and a laser distance meter measurement which goes
from the center of the image sensor plane to the center of each mirror facet.
We use our method to both align the mirror facet positions and to feed the
measured positions into our IACT simulation. We demonstrate our implementation
on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and
implementation demonstratio
Data compression for the First G-APD Cherenkov Telescope
The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT)
has been operating on the Canary island of La Palma since October 2011.
Operations were automated so that the system can be operated remotely. Manual
interaction is required only when the observation schedule is modified due to
weather conditions or in case of unexpected events such as a mechanical
failure. Automatic operations enabled high data taking efficiency, which
resulted in up to two terabytes of FITS files being recorded nightly and
transferred from La Palma to the FACT archive at ISDC in Switzerland. Since
long term storage of hundreds of terabytes of observations data is costly, data
compression is mandatory. This paper discusses the design choices that were
made to increase the compression ratio and speed of writing of the data with
respect to existing compression algorithms.
Following a more detailed motivation, the FACT compression algorithm along
with the associated I/O layer is discussed. Eventually, the performances of the
algorithm is compared to other approaches.Comment: 17 pages, accepted to Astronomy and Computing special issue on
astronomical file format
Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope
The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of
the performance of silicon photo detectors in Cherenkov Astronomy. For more
than two years it is operated on La Palma, Canary Islands (Spain), for the
purpose of long-term monitoring of astrophysical sources. For this, the
performance of the photo detectors is crucial and therefore has been studied in
great detail. Special care has been taken for their temperature and voltage
dependence implementing a correction method to keep their properties stable.
Several measurements have been carried out to monitor the performance. The
measurements and their results are shown, demonstrating the stability of the
gain below the percent level. The resulting stability of the whole system is
discussed, nicely demonstrating that silicon photo detectors are perfectly
suited for the usage in Cherenkov telescopes, especially for long-term
monitoring purpose
FACT -- Operation of the First G-APD Cherenkov Telescope
Since more than two years, the First G-APD Cherenkov Telescope (FACT) is
operating successfully at the Canary Island of La Palma. Apart from its purpose
to serve as a monitoring facility for the brightest TeV blazars, it was built
as a major step to establish solid state photon counters as detectors in
Cherenkov astronomy.
The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode
avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since
properties as the gain of G-APDs depend on temperature and the applied voltage,
a real-time feedback system has been developed and implemented. To correct for
the change introduced by temperature, several sensors have been placed close to
the photon detectors. Their read out is used to calculate a corresponding
voltage offset. In addition to temperature changes, changing current introduces
a voltage drop in the supporting resistor network. To correct changes in the
voltage drop introduced by varying photon flux from the night-sky background,
the current is measured and the voltage drop calculated. To check the stability
of the G-APD properties, dark count spectra with high statistics have been
taken under different environmental conditions and been evaluated.
The maximum data rate delivered by the camera is about 240 MB/s. The recorded
data, which can exceed 1 TB in a moonless night, is compressed in real-time
with a proprietary loss-less algorithm. The performance is better than gzip by
almost a factor of two in compression ratio and speed. In total, two to three
CPU cores are needed for data taking. In parallel, a quick-look analysis of the
recently recorded data is executed on a second machine. Its result is publicly
available within a few minutes after the data were taken.
[...]Comment: 19th IEEE Real-Time Conference, Nara, Japan (2014
First Study of Combined Blazar Light Curves with FACT and HAWC
For studying variable sources like blazars, it is crucial to achieve unbiased
monitoring, either with dedicated telescopes in pointing mode or survey
instruments. At TeV energies, the High Altitude Water Cherenkov (HAWC)
observatory monitors approximately two thirds of the sky every day. It uses the
water Cherenkov technique, which provides an excellent duty cycle independent
of weather and season. The First G-APD Cherenkov Telescope (FACT) monitors a
small sample of sources with better sensitivity, using the imaging air
Cherenkov technique. Thanks to its camera with silicon-based photosensors, FACT
features an excellent detector performance and stability and extends its
observations to times with strong moonlight, increasing the duty cycle compared
to other imaging air Cherenkov telescopes. As FACT and HAWC have overlapping
energy ranges, a joint study can exploit the longer daily coverage given that
the observatories' locations are offset by 5.3 hours. Furthermore, the better
sensitivity of FACT adds a finer resolution of features on hour-long time
scales, while the continuous duty cycle of HAWC ensures evenly sampled
long-term coverage. Thus, the two instruments complement each other to provide
a more complete picture of blazar variability. In this presentation, the first
joint study of light curves from the two instruments will be shown, correlating
long-term measurements with daily sampling between air and water Cherenkov
telescopes. The presented results focus on the study of the variability of the
bright blazars Mrk 421 and Mrk 501 during the last two years featuring various
flaring activities.Comment: 6 pages, 2 figures. Contribution to the 6th International Symposium
on High Energy Gamma-Ray Astronomy (Gamma2016), Heidelberg, Germany. To be
published in the AIP Conference Proceeding
- …