5 research outputs found

    Optical Sum Rule in Finite Bands

    Full text link
    In a single finite electronic band the total optical spectral weight or optical sum carries information on the interactions involved between the charge carriers as well as on their band structure. It varies with temperature as well as with impurity scattering. The single band optical sum also bears some relationship to the charge carrier kinetic energy and, thus, can potentially provide useful information, particularly on its change as the charge carriers go from normal to superconducting state. Here we review the considerable advances that have recently been made in the context of high TcT_c oxides, both theoretical and experimental.Comment: Review article accepted for publication in J. Low Temp. Phys. 29 pages, 33 figure

    Zn-Neighbor Cu NQR in Zn-Substituted YBa2Cu3O7-d and YBa2Cu4O8

    Full text link
    We studied local electronic states near Zn in optimally doped YBa2_2(Cu1x_{1-x}Zn_x)3_3O7δ_{7-\delta} and underdoped YBa2_2(Cu1x_{1-x}Zn_x)4_4O8_8 via satellite signals of plane-site Cu(2) nuclear quadrupole resonance (NQR) spectra. From the relative intensity of Cu NQR spectra, the satellite signals are assigned to Zn-neighbor Cu NQR lines. The Cu nuclear spin-lattice relaxation time of the satellite signal is shorter than that of the main signal, which indicates that the magnetic correlation is locally enhanced near Zn both for the underdoped and the optimally doped systems. The pure YBa2_2Cu4_4O8_8 is a stoichiometric, homogenous, underdoped electronic system; nevertheless, the Zn-induced inhomogeneous magnetic response in the CuO2_2 plane is more marked than that of the optimally doped YBa2_2Cu3_3O7δ_{7-\delta}.Comment: 9 pages including 8 figures, to be published in Phys. Rev.

    Bibliographie

    No full text
    corecore