7 research outputs found
Improving argumentation-based recommender systems through context-adaptable selection criteria
Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation.Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación; Argentina. Universidad Nacional de Entre RÃos; ArgentinaFil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación; ArgentinaFil: GarcÃa, Alejandro Javier. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación; Argentin
An approach to argumentative reasoning servers with multiple preference criteria
Argumentation is a reasoning mechanism of dialectical and non-monotonic na- ture, with useful properties of computational tractability. In dynamic domains where agents deal with incomplete and contradictory information, an argument comparison criterion can be used to determine the accepted information; ar- gumentation systems with a single argument comparison criterion have been widely studied. In some of these approaches the comparison criterion is fixed, while in others a criterion can be selected and replaced in a modular way. In this work, we introduce an argumentative server that provides recommendations to its client agents and the possibility of indicating under what conditions an argument comparison criterion can be chosen to answer a particular query. To achieve this, we formalize a special type of query which, by using a conditional expression, allows the server to dynamically choose a criterion. As a result, several properties of these expressions will be studied.Fil: Teze, Juan Carlos Lionel. Universidad Nacional del Sur. Departamento de Ciencia e IngenierÃa de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Universidad Nacional del Sur. Departamento de Ciencias de la Administración; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Gottifredi, Sebastián. Universidad Nacional del Sur. Departamento de Ciencia e IngenierÃa de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: GarcÃa, Alejandro Javier. Universidad Nacional del Sur. Departamento de Ciencia e IngenierÃa de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Simari, Guillermo Ricardo. Universidad Nacional del Sur. Departamento de Ciencia e IngenierÃa de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentin
Merging existential rules programs in multi-agent contexts through credibility accrual
Merging operators represent a significant tool to extract a consistent and informative view from a set of agents. The consideration of practical scenarios where some agents can be more credible than others has contributed to substantially increase the interest in developing systems working with trust models. In this context, we propose an approach to the problem of merging knowledge in a multiagent scenario where every agent assigns to other agents a value reflecting its perception on how credible each agent is. The focus of this paper is the introduction of an operator for merging Datalog± ontologies considering agents’ credibility. We present a procedure to enhance a conflict resolution strategy by exploiting the credibility attached to a set of formulas; the approach is based on accrual functions that calculate the value of formulas according to the credibility of the agents that inform them. We show how our new operator can obtain the best-valued knowledge base among consistent bases available, according to the credibilities attached to the sources.Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; Argentina. Universidad Nacional de Entre RÃos. Facultad de Ciencias de la Administración; ArgentinaFil: Teze, Juan Carlos Lionel. Universidad Nacional de Entre RÃos. Facultad de Ciencias de la Administración; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; Argentin
An approach to improve argumentation-based epistemic planning with contextual preferences.
Current approaches to argumentation-based planning represent an interesting proposal where defeasible argumentation is used as a practical mechanism suitable for reasoning with potentially contradictory information in dynamic environments. In many real-world planning scenarios, the development of formalisms allowing explicit preference specification over pieces of knowledge turns out to be an essential task—however, despite its importance, existing planning systems are not provided with the possibility of dynamically changing these preferences when a plan is being constructed. This paper presents an argumentation-based approach to deal with the handling of preferences when a plan is formulated; in particular, we propose using conditional expressions to select and change priorities regarding information upon which plans are constructed. Our aim is not to improve the efficiency of current planning systems, but to enhance the resulting plan itself by introducing an approach capable of representing and handling multiple preferences over defeasible knowledge. This approach will contribute to the strengthening of existing argumentation-based epistemic planning systems, providing a useful tool that the user could exploit. Finally, we also present a running-time analysis and several complexity results associated with our approach.Fil: Teze, Juan Carlos Lionel. Universidad Nacional de Entre RÃos. Facultad de Ciencias de la Administración; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Godo, Lluis. Consejo Superior de Investigaciones CientÃficas; EspañaFil: Simari, Gerardo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; Argentin
An approach to generalizing the handling of preferences in argumentation-based decision-making systems
As a practical mechanism for formalizing commonsense reasoning, argumentation has shown its potential for applications in diverse areas, many related to decision-making in knowledge-based systems. Following this line, and for helping users in making a better and informed decision, different recommender systems proposals have been developed in the argumentation literature. We will use recommender systems as a good example where to exercise our proposal. In particular, the role of preference criterion in argumentation-based recommender systems which is used to compare competing arguments is central to the user’s query answering process where if the criterion does not adjust to the represented domain, the system could fail by being undecided too often. Therefore, having tools that allow to select and change the argument comparison mechanism has to be used become a central issue. Argumentation-based recommender systems that offer these tools provide an interesting ability that can be used for improving the reasoning capabilities in this type of systems. This work introduces an approach to handle multiple argument preference criteria in argumentation-based recommender systems and general knowledge-based decision support systems. More precisely, the proposal allows changing the information that a criterion can use in the argument comparison process and specify how several criteria can be simultaneously used in such process as well; to achieve that goal, a set of operators to combine several criteria is presented. The knowledge representation and reasoning is performed in Defeasible Logic Programming, a defeasible argumentation formalism based on logic programming.Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; Argentina. Universidad Nacional de Entre RÃos. Facultad de Ciencias de la Administración; ArgentinaFil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; ArgentinaFil: GarcÃa, Alejandro Jorge. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; Argentin
The HEIC application framework for implementing XAI-based socio-technical systems
The development of data-driven Artificial Intelligence systems has seen successful application in diverse domains related to social platforms; however, many of these systems cannot explain the rationale behind their decisions. This is a major drawback, especially in critical domains such as those related to cybersecurity, of which malicious behavior on social platforms is a clear example. In light of this problem, in this paper we make several contributions: (i) a proposal of desiderata for the explanation of outputs generated by AI-based cybersecurity systems; (ii) a review of approaches in the literature on Explainable AI (XAI) under the lens of both our desiderata and further dimensions that are typically used for examining XAI approaches; (iii) the Hybrid Explainable and Interpretable Cybersecurity (HEIC) application framework that can serve as a roadmap for guiding R&D efforts towards XAI-based socio-technical systems; (iv) an example instantiation of the proposed framework in a news recommendation setting, where a portion of news articles are assumed to be fake news; and (v) exploration of various types of explanations that can help different kinds of users to identify real vs. fake news in social platform settings.Fil: Paredes, José Nicolás. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; ArgentinaFil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentina. Universidad Nacional de Entre RÃos. Facultad de Ciencias de la Administración; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Instituto de Ciencias e IngenierÃa de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e IngenierÃa de la Computación. Instituto de Ciencias e IngenierÃa de la Computación; Argentina. Arizona State University; Estados Unido