11 research outputs found

    Mediator-based communication, negotiation and scheduling for decentralised production management

    Get PDF
    Recent trends in industry towards autonomous and co-operative production systems and latest developments in data network technologies have created new opportunities for enhancing the co-operation of production networks. In order to take advantage of the emerged opportunities, an approach based on a software system called Mediator has been developed. The Mediator provides order planning support necessary to integrate decisionmaking and scheduling of several actors in decentralised business organisations. The approach will be demonstrated in the context of order planning in multi-site and supplychain production

    Topographical mineralogy of the Bamble sector, south Norway /

    No full text
    The Bamble sector of southern Norway is a classic high grade metamorphic gneiss region, which provided specimens to many mineralogical collections all over the world. The topographical mineralogy of this area is described and reviewed. All minerals known to occur in the area are listed according to Strunz’ classification

    Transmission of Zika virus by dendritic cell subsets in skin and vaginal mucosa

    No full text
    Zika virus is a member of the Flaviviridae family that has caused recent outbreaks associated with neurological malformations. Transmission of Zika virus occurs primarily via mosquito bite but also via sexual contact. Dendritic cells (DCs) and Langerhans cells (LCs) are important antigen presenting cells in skin and vaginal mucosa and paramount to induce antiviral immunity. To date, little is known about the first cells targeted by Zika virus in these tissues as well as subsequent dissemination of the virus to other target cells. We therefore investigated the role of DCs and LCs in Zika virus infection. Human monocyte derived DCs (moDCs) were isolated from blood and primary immature LCs were obtained from human skin and vaginal explants. Zika virus exposure to moDCs but not skin and vaginal LCs induced Type I Interferon responses. Zika virus efficiently infected moDCs but neither epidermal nor vaginal LCs became infected. Infection of a human full skin model showed that DC-SIGN expressing dermal DCs are preferentially infected over langerin+ LCs. Notably, not only moDCs but also skin and vaginal LCs efficiently transmitted Zika virus to target cells. Transmission by LCs was independent of direct infection of LCs. These data suggest that DCs and LCs are among the first target cells for Zika virus not only in the skin but also the genital tract. The role of vaginal LCs in dissemination of Zika virus from the vaginal mucosa further emphasizes the threat of sexual transmission and supports the investigation of prophylaxes that go beyond mosquito control

    Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin

    No full text
    Dendritic cells play a pivotal role in the induction of antitumor immune responses. Immature dendritic cells are located intratumorally within colorectal cancer and intimately interact with tumor cells, whereas mature dendritic cells are present peripheral to the tumor. The majority of colorectal cancers overexpress carcinoembryonic antigen (CEA), and malignant transformation changes the glycosylation of CEA on colon epithelial cells, resulting in higher levels of Lewis(x) and de novo expression of Lewis(y) on tumor-associated CEA. Dendritic cells express the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) that has high affinity for nonsialylated Lewis antigens, so we hypothesized that DC-SIGN is involved in recognition of colorectal cancer cells by dendritic cells. We show that immature dendritic cells within colorectal cancer express DC-SIGN and that immature dendritic cells but not mature dendritic cells interact with tumor cells. DC-SIGN mediates these interactions through binding of Lewis(x) and Lewis(y) carbohydrates on CEA of colorectal cancer cells. In contrast, DC-SIGN does not bind CEA expressed on normal colon epithelium that contains low levels of Lewis antigens. This indicates that dendritic cells may recognize colorectal cancer cells through binding of DC-SIGN to tumor-specific glycosylation on CEA. Similar to pathogens that target DC-SIGN to escape immunosurveillance, tumor cells may interact with DC-SIGN to suppress dendritic cell function

    The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma

    No full text
    The epithelial mucin MUC1 is a high molecular weight membrane glycoprotein frequently overexpressed and aberrantly glycosylated in adenocarcinoma. Mucins normally contain high amounts of O-linked carbohydrate structures that may influence immune reactions to this antigen. During malignant transformation, certain glyco-epitopes of MUC1, such as Tn-antigen, TF-antigen and their sialylated forms become exposed. The role of these glycan structures in tumor biology is unknown, but their presence is known to correlate with poor prognosis in several adenocarcinomas. We analyzed the potency of MUC1 containing Tn-antigens (MUC1-Tn) to target C-type lectins that function as carbohydrate recognition and uptake molecules on dendritic cells (DC). We identified the macrophage galactose type C-type lectin (MGL), expressed by both DC and macrophages, as the receptor for recognition and binding of MUC1-Tn. To validate the occurrence of MGL-MUC1 interactions in situ, we studied the binding of MGL to MUC1 in primary colon carcinoma tissue. Isolation of MUC1 out of colon carcinoma tissue showed strong binding activity to MGL. Interestingly, MGL binding to MUC1 was highly correlated to binding by the lectin Helix pomatia agglutinin (HPA), which is associated with poor prognosis in colorectal cancer. The detection of MGL positive cells in situ at the tumor site together with the modified glycosylation status of MUC1 to target MGL on DC suggests that MGL positive antigen presenting cells may play a role in tumor progressio

    Plasma citrulline concentration, a marker for intestinal functionality, reflects exercise intensity in healthy young men

    No full text
    BACKGROUND & AIMS: Plasma citrulline concentration is considered to be a marker for enterocyte metabolic mass and to reflect its reduction as may occur during intestinal dysfunction. Strenuous exercise can act as a stressor to induce small intestinal injury. Our previous studies suggest that this comprises the intestinal ability to produce citrulline from a glutamine-rich protein bolus. In this study we investigated the effects of different exercise intensities and hydration state on citrulline and iFABP levels following a post-exercise glutamine bolus in healthy young men. METHODS: Fifteen healthy young men (20-35 yrs, VO2 max 56.9 ± 3.9 ml kg-1 min-1) performed in a randomly assigned cross-over design, a rest (protocol 1) and four cycle ergometer protocols. The volunteers cycled submaximal at different percentages of their individual pre-assessed maximum workload (Wmax): 70% Wmax in hydrated (protocol 2) and dehydrated state (protocol 3), 50% Wmax (protocol 4) and intermittent 85/55% Wmax in blocks of 2 min (protocol 5). Immediately after 1 h exercise or rest, subjects were given a glutamine bolus with added alanine as an iso-caloric internal standard (7.5 g of each amino acid). Blood samples were collected before, during and after rest or exercise, up to 24 h post onset of the experiment. Amino acids and urea were analysed as metabolic markers, creatine phosphokinase and iFABP as markers of muscle and intestinal damage, respectively. Data were analysed using a multilevel mixed linear statistical model. p values were corrected for multiple testing. RESULTS: Citrulline levels already increased before glutamine supplementation during normal hydrated exercise, while this was not observed in the dehydrated and rest protocols. The low intensity exercise protocol (50% Wmax) showed the highest increase in citrulline levels both during exercise (43.83 μmol/L ± 2.63 (p < 0.001)) and after glutamine consumption (50.54 μmol/L ± 2.62) compared to the rest protocol (28.97 μmol/L ± 1.503 and 41.65 μmol/L ± 1.96, respectively, p < 0.05). However, following strenuous exercise at 70% Wmax in the dehydrated state, citrulline levels did not increase during exercise and less after the glutamine consumption when compared to the resting condition and hydrated protocols. In line with this, serum iFABP levels were the highest with the strenuous dehydrated protocol (1443.72 μmol/L ± 249.9, p < 0.001), followed by the high intensity exercise at 70% Wmax in the hydrated condition. CONCLUSIONS: Exercise induces an increase in plasma citrulline, irrespective of a glutamine bolus. The extent to which this occurs is dependent on exercise intensity and the hydration state of the subjects. The same holds true for both the post-exercise increase in citrulline levels following glutamine supplementation and serum iFABP levels. These data indicate that citrulline release during exercise and after an oral glutamine bolus might be dependent on the intestinal health state and therefore on intestinal functionality. Glutamine is known to play a major role in intestinal physiology and the maintenance of gut health and barrier function. Together, this suggests that in clinical practice, a glutamine bolus to increase citrulline levels after exercise might be preferable compared to supplementing citrulline itself. To our knowledge this is the first time that exercise workload-related effects on plasma citrulline are reported in relation to intestinal damage

    Plasma citrulline concentration, a marker for intestinal functionality, reflects exercise intensity in healthy young men

    No full text
    <p>Background &amp; aims: Plasma citrulline concentration is considered to be a marker for enterocyte metabolic mass and to reflect its reduction as may occur during intestinal dysfunction. Strenuous exercise can act as a stressor to induce small intestinal injury. Our previous studies suggest that this comprises the intestinal ability to produce citrulline from a glutamine-rich protein bolus. In this study we investigated the effects of different exercise intensities and hydration state on citrulline and iFABP levels following a post-exercise glutamine bolus in healthy young men. Methods: Fifteen healthy young men (20–35 yrs, VO<sub>2</sub> max 56.9 ± 3.9 ml kg<sup>−1</sup> min<sup>−1</sup>) performed in a randomly assigned cross-over design, a rest (protocol 1) and four cycle ergometer protocols. The volunteers cycled submaximal at different percentages of their individual pre-assessed maximum workload (Wmax): 70% Wmax in hydrated (protocol 2) and dehydrated state (protocol 3), 50% Wmax (protocol 4) and intermittent 85/55% Wmax in blocks of 2 min (protocol 5). Immediately after 1 h exercise or rest, subjects were given a glutamine bolus with added alanine as an iso-caloric internal standard (7.5 g of each amino acid). Blood samples were collected before, during and after rest or exercise, up to 24 h post onset of the experiment. Amino acids and urea were analysed as metabolic markers, creatine phosphokinase and iFABP as markers of muscle and intestinal damage, respectively. Data were analysed using a multilevel mixed linear statistical model. p values were corrected for multiple testing. Results: Citrulline levels already increased before glutamine supplementation during normal hydrated exercise, while this was not observed in the dehydrated and rest protocols. The low intensity exercise protocol (50% Wmax) showed the highest increase in citrulline levels both during exercise (43.83 μmol/L ± 2.63 (p &lt; 0.001)) and after glutamine consumption (50.54 μmol/L ± 2.62) compared to the rest protocol (28.97 μmol/L ± 1.503 and 41.65 μmol/L ± 1.96, respectively, p &lt; 0.05). However, following strenuous exercise at 70% Wmax in the dehydrated state, citrulline levels did not increase during exercise and less after the glutamine consumption when compared to the resting condition and hydrated protocols. In line with this, serum iFABP levels were the highest with the strenuous dehydrated protocol (1443.72 μmol/L ± 249.9, p &lt; 0.001), followed by the high intensity exercise at 70% Wmax in the hydrated condition. Conclusions: Exercise induces an increase in plasma citrulline, irrespective of a glutamine bolus. The extent to which this occurs is dependent on exercise intensity and the hydration state of the subjects. The same holds true for both the post-exercise increase in citrulline levels following glutamine supplementation and serum iFABP levels. These data indicate that citrulline release during exercise and after an oral glutamine bolus might be dependent on the intestinal health state and therefore on intestinal functionality. Glutamine is known to play a major role in intestinal physiology and the maintenance of gut health and barrier function. Together, this suggests that in clinical practice, a glutamine bolus to increase citrulline levels after exercise might be preferable compared to supplementing citrulline itself. To our knowledge this is the first time that exercise workload-related effects on plasma citrulline are reported in relation to intestinal damage.</p
    corecore