35 research outputs found

    Memory and imagery in guitar practice

    Get PDF
    Esta pesquisa investigou a potencial relação entre habilidades de memorização na prática violonística em função das habilidades imagéticas. Nove violonistas foram submetidos a testes de memorização com privação de feedback sensorial de três condições experimentais: motora (remoção do feedback sonoro), aural (remoção do feedback motor) e visual (remoção dos feedbacks motor e aural). Condições de controle foram também testadas. Os participantes foram instruídos a imaginarem o feedback ausente. Após dez repetições dos trechos musicais construídos especialmente para os testes, os violonistas tocavam o que memorizaram em condições habituais de performance. O desempenho na memorização dos trechos estudados nas condições motora e visual foi inferior àquele obtido nas condições aural e controle, o que indicou a importância da presença do feedback sonoro durante o estudo de peças novas para o processo de memorização. Relacionando esses desempenhos com as habilidades de imagética aural dos participantes, notou-se que aqueles com maiores habilidades de imagética não foram prejudicados pela ausência dos feedbacks nas tarefas de memorização, mantendo o desempenho em todas as condições testadas. Estes dados sugerem a importância da habilidade de imagética aural e corrobora com a ideia de que os músicos podem se beneficiar dela para o processo de memorização.This research investigated the potential relationship between memorization and imagery skills (mental practice virtually promoting a real sensory experience) while practicing the guitar. Nine guitarists were submitted to memory tests with sensory feedback deprivation, namely motor (auditory feedback absent), auditory (motor feedback absent) and visual (both motor and auditory feedback absent). Control conditions were also tested. Participants were instructed to imagine absent feedback. After playing music excerpts specifically composed for the tests ten times, the guitarists played what they had memorized as they would usually do when preparing for a performance. Memorization of the music studied under motor and visual conditions was less effective than the performance under auditory and control conditions, suggesting the importance of sound feedback for effective memorization while practicing a new piece. When comparing these results to participant auditory imagery skills, the results showed that subjects with stronger imagery skills were less affected by the absence of feedback during the memorization process, being able to maintain performance levels under all test conditions. These data suggest the importance of auditory imagery skills and corroborates the idea that musicians can benefit from this skill during the process of memorizatio

    Status of the PALM-3000 high order adaptive optics instrument

    Get PDF
    We report on the status of PALM-3000, the second generation adaptive optics instrument for the 5.1 meter Hale telescope at Palomar Observatory. PALM-3000 was released as a facility class instrument in October 2011, and has since been used on the Hale telescope a total of over 250 nights. In the past year, the PALM-3000 team introduced several instrument upgrades, including the release of the 32x32 pupil sampling mode which allows for correction on fainter guide stars, the upgrade of wavefront sensor relay optics, the diagnosis and repair of hardware problems, and the release of software improvements. We describe the performance of the PALM-3000 instrument as a result of these upgrades, and provide on-sky results. In the 32x32 pupil sampling mode (15.8 cm per subaperture), we have achieved K-band strehl ratios as high as 11% on a 14.4 mv star, and in the 64x64 pupil sampling mode (8.1 cm per subaperture), we have achieved K-band strehl ratios as high as 86% on stars brighter than 7th m_v

    PALM-3000: Exoplanet Adaptive Optics for the 5 m Hale Telescope

    Get PDF
    We describe and report first results from PALM-3000, the second-generation astronomical adaptive optics (AO) facility for the 5.1 m Hale telescope at Palomar Observatory. PALM-3000 has been engineered for high-contrast imaging and emission spectroscopy of brown dwarfs and large planetary mass bodies at near-infrared wavelengths around bright stars, but also supports general natural guide star use to V ≈ 17. Using its unique 66 × 66 actuator deformable mirror, PALM-3000 has thus far demonstrated residual wavefront errors of 141 nm rms under ~1'' seeing conditions. PALM-3000 can provide phase conjugation correction over a 6."4 × 6."4 working region at λ = 2.2 μm, or full electric field (amplitude and phase) correction over approximately one-half of this field. With optimized back-end instrumentation, PALM-3000 is designed to enable 10^(–7) contrast at 1" angular separation, including post-observation speckle suppression processing. While continued optimization of the AO system is ongoing, we have already successfully commissioned five back-end instruments and begun a major exoplanet characterization survey, Project 1640

    Design and performance of the PALM-3000 3.5 kHz upgrade

    Get PDF
    PALM-3000 (P3K), the second-generation adaptive optics (AO) instrument for the 5.1 meter Hale telescope at Palomar Observatory, underwent a significant upgrade to its wavefront sensor (WFS) arm and real-time control (RTC) system in late 2019. Main features of this upgrade include an EMCCD WFS camera capable of 3.5 kHz framerates and advanced Digital Signal Processor (DSP) boards to replace the aging GPU based real-time control system. With this upgrade P3K is able to maintain a lock on natural guide stars fainter than mV=16. Here we present the design and on-sky re-commissioning results of the upgraded system

    Debris Disk Science with the Palomar ExAO System : First Results

    Get PDF
    We present first imaging results from the PALM-3000 adaptive optics system and PHARO camera on the Hale 5 m telescope. Observations using a vector vortex coronagraph have given us direct detections of the two-ring dusty debris system around the star HD 141569. Our observations reveal the inner clearing in the disk to unprecedentedly small angular separations, and are the most sensitive yet at the H and K bands. We are for the first time able to measure and compare the colors of the scattered light in the inner and outer dust rings, and find that the outer ring is significantly bluer than the inner ring

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex
    corecore