464 research outputs found

    Robust execution of service workflows using redundancy and advance reservations

    No full text
    In this paper, we develop a novel algorithm that allows service consumers to execute business processes (or workflows) of interdependent services in a dependable manner within tight time-constraints. In particular, we consider large inter-organisational service-oriented systems, where services are offered by external organisations that demand financial remuneration and where their use has to be negotiated in advance using explicit service-level agreements (as is common in Grids and cloud computing). Here, different providers often offer the same type of service at varying levels of quality and price. Furthermore, some providers may be less trustworthy than others, possibly failing to meet their agreements. To control this unreliability and ensure end-to-end dependability while maximising the profit obtained from completing a business process, our algorithm automatically selects the most suitable providers. Moreover, unlike existing work, it reasons about the dependability properties of a workflow, and it controls these by using service redundancy for critical tasks and by planning for contingencies. Finally, our algorithm reserves services for only parts of its workflow at any time, in order to retain flexibility when failures occur. We show empirically that our algorithm consistently outperforms existing approaches, achieving up to a 35-fold increase in profit and successfully completing most workflows, even when the majority of providers fail

    Faculty Recital

    Get PDF

    Faculty Recital

    Get PDF

    A Formal Semantic Model of the Semantic Web Service Ontology (WSMO)

    No full text
    Semantic Web Services, one of the most significant research areas within the Semantic Web vision, has attracted increasing attention from both the research community and industry. The Web Service Modelling Ontology (WSMO) has recently been proposed as an enabling framework for the total/partial automation of the tasks (e.g., discovery, selection, composition, mediation, execution, monitoring, etc.) involved in both intra- and inter-enterprise integration of Web Services. To support the standardization and tool support of WSMO, a formal semantics of the language is highly desirable. As there are a few variants of WSMO and it is still under development, the semantics of WSMO needs to be formally defined to facilitate easy reuse and future development. In this paper, we present a formal Object-Z semantics of WSMO. Different aspects of the language have been precisely defined within one unified framework. This model not only provides a formal unambiguous model which can be used to develop tools and facilitate future development, but as demonstrated in this paper, can be used to identify and eliminate errors presented in existing documentation

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    A Formal Model of Semantic Web Service Ontology (WSMO) Execution

    Get PDF
    Semantic Web Services have been one of the most significant research areas within the Semantic Web vision, and have been recognized as a promising technology that exhibits huge commercial potential. Current Semantic Web Service research focuses on defining models and languages for the semantic markup of all relevant aspects of services, which are accessible through a Web service interface. The Web Service Modelling Ontology (WSMO) is one of the most significant Semantic Web Service framework proposed to date. To support the standardization and tool support of WSMO, a formal semantics of the language is highly desirable. As there are a few variants of WSMO and it is still under development, the semantics of WSMO needs to be formally defined to facilitate easy reuse and future development. In this paper, we present a formal Object-Z semantics of WSMO. Different aspects of the language have been precisely defined within one unified framework. This model provides a formal unambiguous specification, which can be used to develop tools and facilitate future development

    New Music Ensemble

    Get PDF

    The Use of Business Analytics Systems: An Empirical Investigation in Taiwan’s Hospitals

    Get PDF
    This paper aims to develop a research model to examine the mechanisms by which business analytics capabilities in healthcare units are shown to indirectly influence decision-making effectiveness through a mediating role of absorptive capacity. We employed a survey method to collect primary data from Taiwan\u27s hospitals. Structural equation modeling (SEM) was used for path analysis. This study conceptualizes, operationalizes, and measures the business analytics (BA) capability as a multi-dimensional construct formed by capturing the functionalities of BA systems in healthcare. The results found that healthcare units are likely to obtain valuable knowledge as they utilize the data interpretation tools effectively. Also, the effective use of data analysis and interpretation tools in healthcare units indirectly influence decision-making effectiveness, an impact that is mediated by absorptive capacity
    corecore