
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

4-2008

A formal model of semantic Web Service Ontology (WSMO) A formal model of semantic Web Service Ontology (WSMO)

execution execution

Hai H. WANG

Nick GIBBINS

Terry R. PAYNE

Ahmed SALEH

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
WANG, Hai H.; GIBBINS, Nick; PAYNE, Terry R.; SALEH, Ahmed; and SUN, Jun. A formal model of semantic
Web Service Ontology (WSMO) execution. (2008). Proceedings of the 13th International Conference on
Engineering of Complex Computer Systems (ICECCS 2008), Belfast, Northern Ireland, March 31 - April 4.
111-120. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5052

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/287750875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A Formal Model of Semantic Web Service Ontology (WSMO) Execution

Hai H. Wang Nick Gibbins Terry Payne Ahmed Saleh
University of Southampton

{hw, nmg, trp, amms}@ecs.soton.ac.uk

Jun Sun
National University of Singapore

sunj@comp.nus.edu.sg

Abstract

Semantic Web Services have been one of the most sig-
nificant research areas within the Semantic Web vision, and
have been recognized as a promising technology that ex-
hibits huge commercial potential. Current Semantic Web
Service research focuses on defining models and languages
for the semantic markup of all relevant aspects of services,
which are accessible through a Web service interface. The
Web Service Modelling Ontology (WSMO) is one of the
most significant Semantic Web Service framework proposed
to date. To support the standardization and tool support of
WSMO, a formal semantics of the language is highly desir-
able. As there are a few variants of WSMO and it is still
under development, the semantics of WSMO needs to be
formally defined to facilitate easy reuse and future devel-
opment. In this paper, we present a formal Object-Z seman-
tics of WSMO. Different aspects of the language have been
precisely defined within one unified framework. This model
provides a formal unambiguous specification, which can be
used to develop tools and facilitate future development.

1 Introduction

The growth of the World-Wide Web and the correspond-
ing evolution of the Web Service paradigm; i.e. distributed,
heterogeneous, self-contained software components that
provide user access to applications supporting tasks such
as e-commerce, entertainment, etc., has resulted in an in-
crease in automation and outsourcing of business processes
for both B2B and B2C applications [15]. However, it re-
lies heavily on engineering expertise and a-priori agreed
service descriptions (using XML-based web service stan-
dards) to construct all but the most trivial service-composed
application. The assembly of workflows between organi-
sations generally requires that engineers have a deeper un-
derstanding of the services (beyond the description of data
models or type definitions published within the service de-
scriptions), and often require additional adapters or com-
ponents that facilitate mediation between otherwise incom-

patible services. The paradigmatic shift brought by the Se-
mantic Web allows such Web Services to be described in a
machine-understandable form, thus facilitating automated
assistance through tool support, automated interoperabil-
ity, or even runtime discovery, comprehension, composition
and invocation of services. This notion of Semantic Web
Services [14] has been one of the most significant research
areas within the Semantic Web vision.

Current Semantic Web Service research has focussed on
defining models and languages for the semantic markup
of all relevant aspects of services, which are then prag-
matically accessible through Web Service interface def-
initions [1, 17]. The Web Service Modeling Ontology
(WSMO) [17] complements the existing syntactic Web ser-
vice standards by providing a conceptual model and lan-
guage for the semantic markup of all relevant aspects of
general Web services. WSMO is based on earlier work
on Unified Problem Solving Methods [10], which was
part of a “...framework for developing knowledge-intensive
reasoning systems based on libraries of generic problem-
solving components...” [9]. It provides a framework for se-
mantic descriptions of Web Services and acts as a meta-
model for such Services based on the Meta Object Facility
(MOF) [16]. The ultimate goal of such markup is to en-
able the total/partial automation of the tasks (e.g., discovery,
selection, composition, mediation, execution, monitoring,
etc.) involved in both intra- and inter-enterprise integration
of Web Services.

In the linguistics of computer languages, the terms syn-
tax, static semantics and dynamic semantics are used to cat-
egorize descriptions of language characteristics. To achieve
a consistent usage of a language, all these three aspects must
be precisely defined. The syntax and semantics of WSMO
are defined in terms of its meta-model. The language has
been described from three different aspects: syntax, static
semantics and dynamic semantics. One of the major prob-
lems with the current WSMO definition is that the three as-
pects of WSMO have been separately described in various
formats by a variety of different authors, mainly in natu-
ral language, i.e., English, complemented with some XML
schemas and simple axioms. These different descriptions

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.25

111

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.25

111

contain redundancy and sometimes contradiction in the in-
formation provided. Furthermore, with the continuous evo-
lution of WSMO, it has been very difficult to consistently
extend and revise these descriptions. More importantly,
the use of natural language is ambiguous and can be in-
terpreted in different ways. This lack of precision in defin-
ing the semantics of WSMO can result in different users,
Web service providers and tool developers having differ-
ent understandings of the same WSMO model. Likewise,
the ontological specification of WSMO is formalised using
WSML [2] rather than OWL or RDF (as used by OWL-
S [1] or SAWSDL1, for example). To support a common
understanding, and facilitate standardization2 and tool de-
velopment for WSMO, a formal semantics of its language
is highly desirable. Also, being a relatively young field,
research into Semantic Web services and WSMO is still on-
going, and therefore a semantic representation of WSMO
needs to be reusable and extendable in a way that can ac-
commodate this evolutionary process.

The aim of our work is to define a complete formal de-
notational semantics of the WSMO language using Object-
Z (OZ) [8]. A denotational approach has been proved to
be one of the most effective ways to define the semantics
of a language, and has been used to give formal semantics
for many programming and modelling languages [13, 21].
Object-Z has been used to provide one single formal model
for the syntax, the static semantics and the dynamic seman-
tics of WSMO. Also, because these different aspects have
been described within a single framework, the consistency
between these aspects can be easily maintained. In our pre-
vious work, we have presented the formal model for the
syntax and static semantics of WSMO [22]. This paper fo-
cuses on the dynamic semantics of WSMO.

The paper is organized as follows. Section 2 briefly in-
troduces the notion of Object-Z, and the formal Object-Z
model of the WSMO execution semantics is presented in
Section 3. Section 4 discusses some of the benefits of this
formal model, and the paper concludes in Section 5 and dis-
cusses possible future work.

2 WSMO and Object-Z Overview

The Web Service Modelling Ontology (WSMO) [17] is
one of the major approaches for modeling services semanti-
cally, based on the earlier work on Unified Problem Solving
Method, which was part of a “...framework for developing
knowledge-intensive reasoning systems based on libraries
of generic problem-solving components...”[9]. WSMO pro-
vides a framework for semantic descriptions of Web Ser-

1http://www.w3.org/2002/ws/sawsdl/ - Semantic Annotations for
WSDL

2http://www.w3.org/Submission/WSMO - Web Service Modeling On-
tology (WSMO)

vices and acts as a meta-model for such Services based on
the Meta Object Facility (MOF) [16]. Semantic service de-
scriptions, according to the WSMO meta model, can be
defined using one of several formal languages defined by
WSML (Web Service Modelling Language) [2], and con-
sists of four core elements deemed necessary to support Se-
mantic Web services: Ontologies, Goals, Web Services and
Mediators. Ontologies are described in WSMO at a meta-
level. A meta-ontology supports the description of all the
aspects of the ontologies that provide the terminology for
the other WSMO elements. Goals are defined in WSMO
as the objectives that a client may have when consulting a
Web service. Web Services provide a semantic description
of services on the web, including their functional and non-
functional properties, as well as other aspects relevant to
their interoperation. Mediators in WSMO are special ele-
ments used to link heterogeneous components involved in
the modelling of a Web service. They define the necessary
mappings, transformations and reductions between linked
elements.

Object-Z [8] is an extension of the Z formal specification
language to accommodate object orientation. The essen-
tial extension to Z in Object-Z is the class construct, which
groups the definition of a state schema with the definitions
of its associated operations. A class is a template for objects
of that class: the states of each object are instances of the
state schema of the class, and its individual state transitions
conform to individual operations of the class. An object is
said to be an instance of a class and to evolve according to
the definitions of its class. The motivation for using this ex-
tension is that it improves the clarity of large specifications
through enhanced structuring.

Operation schemas have a ∆-list of those attributes
whose values may change. By convention, no ∆-list means
that no attribute changes value. OZ also allows composite
operations to be defined using different operation operators,
such as conjunction operator ‘∧’, parallel operator ‘‖’, se-
quential operator ‘o9’, choice operator ‘2’ and etc.

The standard behavioral interpretation of Object-Z ob-
jects is as a transition system [19]. A behavior of a tran-
sition system consists of a series of state transitions each
effected by one of the class operations.

3 Formal Object Model of WSMO Web Ser-
vice

3.1 OZ Approach to WSMO Semantics

The existing specification of WSMO informally or semi-
formally describes the language from three different as-
pects: syntax (a WSMO model is well-formed), static se-
mantics (a WSMO model is meaningful) and dynamic se-
mantics (how is a WSMO model interpreted and executed).

112112

We propose the use of Object-Z to provide a formal specifi-
cation of all aspects of WSMO in one single unified frame-
work, so that the semantics of the language can be more
consistently defined and revised as the language evolves.
The first two aspects of WSMO (i.e. the formal model of
syntax and static semantics) have been addressed in a sep-
arate paper [22], whereas this paper focuses the dynamic
semantics of WSMO3, and is based on the latest version of
WSMO (D2v1.3).

We chose Object-Z over other formalisms to specify
WSMO because:

• The object-oriented modelling style adopted by
Object-Z has good support for modularity and
reusability.
• The semantics of Object-Z itself is well studied. The

denotational semantics [11] and axiomatic seman-
tics [18] of Object-Z are closely related to Z standard
work [23]. Object-Z also has a fully abstract seman-
tics [19].
• Object-Z provides some handy constructs, such as

Class-union [4] etc., to define the polymorphic and re-
cursive nature of language constructs effectively. Z
has previously been used to specify the Web Service
Definition Language (WSDL) [3]; however, as Z lacks
the object-oriented constructs found in OZ, a signifi-
cant portion of the resulting model focused on solv-
ing several low level modeling issues, such as the us-
age of free types, rather than the WSDL language it-
self. Thus, using OZ can greatly simplify the model,
and hence avoid users from being distracted by the
formalisms itself rather than focusing on the resulting
model.
• In our previous work [22], OZ has also been used to

specify the OWL-S language, which is another signifi-
cant Semantic Web Service alternative. Modeling both
OWL-S and WSMO in the same language provides an
opportunity to formally compare the two approaches
and identify possible integration and translation be-
tween the two languages.

As the model of the dynamic behaviours of WSMO re-
quires the understanding of some basic WSMO entities,
such as values, variables and expressions etc, we will start
from these basic constructs. Figure 1 shows the general ap-
proach of the framework. The WSMO elements are mod-
eled as different Object-Z classes. The syntax of the lan-
guage is captured by the attributes of an Object-Z class. The
predicates are defined as class invariant used to capture the
static semantics of the language. The class operations are
used to define WSMO’s dynamic semantics, which describe

3Because of the limited space, we only present a partial model here and
a more complete model can be found at http://www.ecs.soton.
ac.uk/˜hw/WSMO-OZ.pdf.

how the state of a Web service changes.

∅

}
}
}

Class attribute: models WSMO syntax

Class Invariant: models WSMO
static semantics

Class operation: models WSMO
dynamic semantics

Figure 1. The framework

3.2 Values, Variables and Expressions

WSMO includes several different types of values in its
universe. We first define two special value types namely nil
and void, which are modeled as class Nil and VoidVal. They
are used to define how variables are bound. A variable that
equates to nil means that the variable has no value (not being
bound yet), while a variable that equates to void means that
it has a value but we do not care what it is. The meaning of
a void value is simply just the value itself. When an object
of class Nil or VoidVal is instantiated, the identifier self will
denote the identity of the object self.

Nil

V : Value

V = self

VoidVal

V : Value

V = self

Bool
VoidVal

val : B

The class Bool and LiteralValue denote the boolean and
literal (defined as an OZ class) values.

LiteralValue
VoidVal

val : Literal

WSMOElement
VoidVal

id : ID; hasAnnotation :

Annotation

Value == LiteralValue ∪ VoidVal ∪ Nil ∪ Bool∪ ↓ WSMOElement

WSMO refers to all the concepts it defines as elements,
modeled as WSMOElement, and they are one kind of values
as well. The WSMO value in general are modeled as a class
union4.

4↓ is a special convention in OZ denoting a class and all derivatives of
this class.

113113

Variable has two attributes, id which denotes the name
of the variable (The name of variables is modelled as VID);
and v which denotes the value which the variable is bounded
to. Furthermore, three operations defined in Variable –
OutVal, Assign and ToNil, allows it to output its value,
change its value and reset it to a nil value.

Variable

id : VID
V : Value

OutVal
val! : Value

val! = V

Assign
∆(V)

val? : Value

V ′ = val?

ToNil
∆(V)

V ′ ∈ Nil

The logical expression in WSMO can be divided into
simple logical expression and complex logical expression.
Before we model any of them, we model some of the
common attributes of a WSMO expression first. The
hasVariables and usedTerms denotes the set of variables and
WSMO elements used in an expression. V represents the
truth-value of the expression.

Expression

hasVariables : P Variable; usedTerms : P ↓ WSMOElement
V : Bool ∪ Nil

MemberOfExp is one form of simple expression
which denotes the instance molecule with the form of
I memeberOf C, where I is an instance and C is a concept.
The last two predicates in the class invariant means that a
MemberOfExp has ‘true’ value if element ins is an instance
of concept con. Other forms of simple logical expressions,
such as AttListExp, SubConceptExp, ConAttributeDefExp
and relation expressions (RelExp) etc., can be defined as
well.

MemberOfExp
Expression

con : Concept ∪ Variable; ins : Instance ∪ Variable

hasVariables = ({con} ∪ {ins}) ∩ Variable

usedTerms = ({con} ∪ {ins})∩ ↓ WSMOElement

(con.V ∈ Nil ∨ ins.V ∈ Nil)⇒ V ∈ Nil

¬ (con.V ∈ Nil ∨ ins.V ∈ Nil)⇒
(V ∈ Bool ∧ (V.val⇔ (con.V ∈ ins.V.totalType)))

The complex logical expression is extended form the
simple expression. For example LeftImpExp models ⇐

form implication and ForAllExp denotes a ‘For All’ quali-
fied expression. Other types of complex expression, such as
RightImpExp, DualmpExp, AndExp and ExistExp etc., can
be defined as well.

LeftImpExp
Expression

left :↓ Expression; right :↓ Expression

usedTerms = left.usedTerms ∪ right.usedTerms

hasVariables = left.hasVariables ∪ right.hasVariables

left.V ∈ Nil ∨ right.V ∈ Nil⇒ V ∈ Nil

¬ (left.V ∈ Nil ∨ right.V ∈ Nil)⇒
(¬ left.V.val ∨ right.V.val)⇔ V.val

ForAllExp
Expression

var : Variable; operand :↓ Expression

hasVariables = operand.hasVariables
usedTerms = operand.usedTerms
var ∈ hasVariables
V.val⇔ (∀ v : Value \ Nil • var.V = v⇒

operand.V.val⇔ true)

3.3 Web Service model

WSMO has four top-level elements as the main con-
cepts which have to be described in order to define Seman-
tic Web Services: namely, Ontologies, Web Services, Goals
and Mediators. Among them, Web Service is the key el-
ement that represents the functional (and behavioural) as-
pects of a service. Each Web service represents an atomic
piece of functionality that can be reused to build more com-
plex ones. Web services are described in WSMO from al-
ternate perspectives: functionality and behaviour. A Web
service can be described by multiple interfaces, but has one
and only one capability. The capability of a Web service
encapsulates its functionality and an interface of a Web Ser-
vice describes the behaviour of the Web Service from two
perspectives: communication and collaboration. We will
formally specify their behaviours later.

3.3.1 Capability:

A Web service has exactly one capability, which defines
the functionality of the service. A Web service capabil-
ity is defined by specifying the precondition, postcondition,
assumption, and effect, each of which is a set of expressions.

114114

Detailed model of the syntax and static semantics of
Capability can be found in [22]. The operation PreAssSat is
used to check if the preconditions and assumptions are true
before service execution. NotPreAssSat denotes the oppo-
site situation which is the existence of some preconditions
or assumptions whose values are not true. PostEffSat is used
to check if the postconditions and effects are true after the
execution of the service.

Capability
ServiceElement

hasPrecondition, hasPostcondition, hasAssumption,

hasEffect : P ↓ Expression;

PreAssSat
∀ pre : hasPrecondition • pre.V.val⇔ true
∀ ass : hasAssumption • ass.V.val⇔ true

PostEffSat
∀ post : hasPostcondition • post.V.val⇔ true
∀ eff : hasEffect • eff .V.val⇔ true

NotPreAssSat
∃ e : hasPrecondition ∪ hasAssumption •
¬ (e.V.val⇔ true)

3.3.2 Interface:

An interface describes how the functionality of the Web
service can be achieved from two different views –
Choreography and Orchestration. Orchestration describes
how the service makes use of other services in order to
achieve its capability by defining the communication pat-
tern that allows it to consume the functionality of Web Ser-
vices and Goals. However these aspects of WSMO are still
to be further investigated, and are not covered in this paper.

Interface
ServiceElement

hasChoreography : P Choreography
hasOrchestration : P Orchestration;

∆

enabledChoreography : P Choreography

enabledChoreography =

{cho : hasChoreography | cho.enabledRules 6= ∅}

selectChor
chor! : enabledChoreography

Execute =̂ selectChor • chor!.Execute

The attribute enabledChoreography denotes the set of
enabled Choreography, i.e. these Choreography descriptors
which enable transition rules. The operation Execute mod-
els the fact that one of enabled choreography defined in the
interface will be chosen and executed. The execution of
Choreography will be defined later.

3.3.3 Choreography:

WSMO Choreography shows how a client deals with the
Web service. Choreography has three main components.
StateSignature defines the static part of the state descrip-
tions. State (or ground facts) models the dynamic part of
the state descriptions, and transitionRule models the state
changes by changing the values of the ground facts as de-
fined in the set of the imported ontologies. The secondary
attribute, enabledRules, denotes all transition rules that can
be currently performed.

The behavior of Choreography is defined by the oper-
ation Execute. If the knowledge base is inconsistent, the
execution will terminate and an error message is returned.
‘MSG’ is defined as a Z given type. The WSMO ontol-
ogy consists of a number of variants based on the different
logical formalisms as defined by the WSML modeling lan-
guage [2]: Core, DL, FLight, Rule and Full; and support
increasing levels of entailment. Specifying these different
semantics in Z or OZ is valuable, as it allows us to reuse
existing formal tools to provide reasoning service for those
variant ontologies. However, the detailed specification of
these ontology semantics is beyond the scope of this pa-
per. Here, the function checkConsistent is used to abstract
the relations between an ontology or service state and its
consistency. If the knowledge base is consistent, an en-
abled rule will be selected and executed. Note that in our
model, the only constraint is that the selected transition rule
is a subset of the enabledRules (operation selectEnables);
however, WSMO does not define how the enabled rules

115115

are fired. The service providers have the freedom to im-
plement their own systems, e.g., by adding the predicate
‘#toBeExRules! = 1’ in selectEnables to indicate that the
enabled rule will be fired once every time or by adding
‘toBeExRules = enabledRules’ to indicate that all the en-
abled rules will be fired together. These steps are repeated
until no more conditions of any rule are equal to true.

Choreography
InterfaceElement

......

hasStateSignature : StateSignature; hasState : State;

hasTransitionRules : P ↓ TransitionRule
∆

enabledRules : P ↓ TransitionRule

enabledRules =

{rule : hasTransitionRules | rule.enable⇔ true}

selectEnables
toBeExRules! : P ↓ TransitionRule

toBeExRules! ⊆ enabledRules

stateConsistent
consistent! : B

consistent! =

checkConsistent(hasState)

ReportInconsistent
inconMSG! : MSG

FireRules =̂ [toBeExRules? : P ↓ TransitionRule] •
∧r : toBeExRules? • r.Execute

Execute =̂ stateConsistent ‖
([consistent? : B | consistent?⇔ true] • (

([enabledRules 6= ∅] •
(selectEnables o

9 FireRules)) o
9 Execute

2

([enabledRules = ∅]))
2

[consistent? : B | consistent?⇔ false] •
ReportInconsistent)

checkConsistent : (Ontology ∪ State)→ B

3.3.4 Transition rules:

In a choreography specification, transaction rules ex-
press changes of states by changing the set of instances.
TransitionRule denotes a WSMO transition rule in general.
The secondary attribute enable denotes if a TransitionRule
is ready to fire. Execute denotes how a TransitionRule
changes the world.

TransitionRule

∆

enable : B

Execute

AddMemberOf
TransitionRule

fact : MemberOfExp

enable⇔
fact.con ∈ Concept
∧ fact.ins ∈ Instance

getCon
con! : Concept

con! = fact.con

Execute =̂ [enable⇔ true] • fact.addType o
9 getCon

UpdateMemberOf
TransitionRule

oldFact : P MemberOfExp; newFact : MemberOfExp

#oldFact ≤ 1 ∧ (∀ o : oldFact • o.ins = newFact.ins)
enable⇔ newFact.con ∈ Concept ∧ newFact.ins ∈ Instance

getNewCon
con! : Concept

con! = newFact.con

Execute1 =̂ [oldFact = ∅] •
∧c : {y : Concept | y 6= newFact.con

∧ newFact.con 6∈ y.totalSuperConcept} •
[con! : Concept | con! = c] o

9newFact.removeType
∧getNewCon o

9 newFact.addType
Execute2 =̂ [oldFact 6= ∅] •
∧of : oldFact • (of .getCon o

9 newFact.removeType)

∧getNewCon o
9 newFact.addType

Execute =̂ [enable⇔ true] • (Execute1 2 Execute2)

The transition rules can be expressed in various forms.
The first form is a set of update rules. For example
AddMemberOf denotes the rules used to assert that an
instance is a member of a Concept and UpdateMemberOf
denotes the rules to change the membership of an instance.
UpdateMemberOf has an optional attribute oldFact. If
oldFact is defined (modeled by Execute2), the execution
of the rule will delete the old fact and add the new fact.
Otherwise, execution will remove all existing memberships

116116

of the instance and add the new membership (modeled
by Execute1). Due to the space limitation, here we omit
the definitions for some ontology operations like addType
removeType and etc.

IfRule denotes the if-then rule which executes a rule if
the condition is satisfied.

IfRule
TransitionRule

condition :↓ Expression; rule : TransitionRule

enable⇔ (condition.V.val⇔ true)

Execute =̂ [enable⇔ true] • rule.Execute

ChooseRule denotes the choose rule which executes an
update with an arbitrary binding of a variable chosen among
those satisfying the selection condition.

ChooseRule
TransitionRule

variable : Variable; condition :↓ Expression
rule : TransitionRule

enable⇔ (∃ v : Value • variable.V = v⇒
condition.V.val⇔ true)

variable ∈ condition.hasVariables

Execute =̂ [enable⇔ true] •
[v? : Value | variable.V = v?⇒

condition.V.val⇔ true] •
v?.outVal o

9 (variable.Assign∧ rule.Execute)

ForAllRule denotes the ‘for all’ rule which simultane-
ously executes the updates of each binding of a variable sat-
isfying a given condition.

ForAllRule
TransitionRule

variable : Variable; condition :↓ Expression
rule : TransitionRule

enable⇔ (∃ v : Value • variable.V = v⇒
condition.V.val⇔ true)

variable ∈ condition.hasVariables

Execute =̂∧v? : {v : Value|
variable.V = v⇒ condition.V.val⇔ true} •

v?.OutVal o
9 (variable.Assign∧ rule.Execute)

PipedRule contains a set of rules which is used for non-
determinism. When a PipedRule is executed, an enabled
rule from the rule sets will be randomly picked up and exe-
cuted.

PipedRule
TransitionRule

rules : P TransitionRule

rules 6= ∅
enable⇔ (∃ rule : rules • rule.enable⇔ true)

SelectRule
ru? : TransitionRule

ru? ∈ rules ∧ ru?.enable⇔ true

Execute =̂ SelectRule • ru?.Execute

3.3.5 Service execution

Before we formally define the overall execution of a
WebService, we first introduce a few new attributes
to assist in the specification. WSMO itself does
not include any grounding standards5. In our model,
two attributes inputVar, outputVar and two operations
AssignVarFromEvn, WriteToEvn are used to abstract the
communication between a service and its environment6.
AssignVarFromEvn reads the values from the environment
and assign them to corresponded variables. If the input
value is a WSMO ontology Instance or WSMO ontology
RelationInstance, its type must have the role (mode) as ‘in’
or ‘shared’ and cannot be ‘controlled’. The secondary at-
tributes totalIn, totalOut and totalControl etc. denote all the
Concept and Relation mode defined by the service’s state
signature7. WriteToEvn is used to output values to environ-
ment. If the output value is WSMO ontology Instances or
WSMO ontology RelationInstance, its type must have the
role (mode) as ‘out’ or ‘shared’ and cannot be ‘controlled’.
To make our model more readable, we assume that before
communicating with environments, all conflicts (if there are
any) has been dealt with by the OOMediators.

5A general guide has been given for translating WSMO services into
WSDL. (http://wsmo.org/TR/d24/d24.2/v0.1)

6The description of concrete grounding details is beyond the scope of
this paper.

7More details about state signature can be found in [22].

117117

Service
........

...

inputVar, outputVar : P Variable
∆

totalStatic, totalIn, totalOut, totalShared,

totalControlled : P mode

totalStatic =

∪{c :∪{i : hasInterface • i.hasChoreography}
• c.hasStateSignature.hasStatic}

totalIn = ... ∧ totalOut = ... ∧ totalShared =

......

SelectInterfaces
inter? : hasInterface

∃ cho : inter?.asChoreography • cho.enabledRules 6= ∅

ReadFromEvn
....

WriteToEvn
toVars! : seq Variable

ran toVars! ⊆ outputVar
∀ var : ran toVars! • var.V ∈ Instance ∪ RelationInstance
⇒ var.V.totalType ∩ totalControlled = ∅
∧ var.V.totalType ∩ (totalOut ∪ totalShared) 6= ∅

Execute =̂ ReadFromEvn o
9 (

hasCapability.PreAssSat
o
9SelectInterfaces • inter?.Execute
o
9hasCapability.PostEffSat

2 hasCapability.NotPreAssSat)
o
9WriteToEvn

The behavior of a WebService is defined as the opera-
tion Execute. Firstly, the service gets requests from users
and initialize necessary variables. If the preconditions and
assumptions are satisfied, then the service will be executed,
based on the selected interface and postconditions of the
service. However, if the preconditions and assumptions are
not satisfied and the service is invoked, the behavior is unde-
fined. Tool developers have the freedom to implement their
own scenarios to handle this situation, such as terminate the
execution and report an error message or simply ignore it.
After execution, the service will return any necessary infor-
mation to users (outputs or error messages).

4 Discussions

We have used several Object-Z tools and technology
such as [12, 20], to validate and evaluate the syntax, con-
sistency and validity of the formal model and we are also in
the process of modeling existing WSMO reference services
to further evaluate the full combined model presented here
and in [22].

This formal specification of WSMO can be beneficial to
the Semantic Web service communities in many different
ways, as discussed below:

• Checking the consistency of WSMO language
As stated in Section 1, WSMO is currently a rela-
tively new and continually evolving technology, and
thus may still contain errors. The formal model of
the dynamic semantics of WSMO presented here (and
the accompanying models for the syntax and static se-
mantics [22]) provide a rigorous foundation of the lan-
guage. As demonstrated previously [22], by using ex-
isting formal verification tools, it is possible to find and
correct those errors in the specification, and thus im-
prove the quality of the WSMO standard.
For example, suppose that we define a concept
helpRequest which has an attribute ResponseGroup.
The range of ResponseGroup is strings8. This WSMO
definition can be translated into Object-Z as:

ResponseGroup : Attribute; helpRequest : Concept

ResponseGroup.hasType = String
helpRequest.hasAttribute = {ResponseGroup,}......

Note that the translation from WSMO to Object-Z can
be automatically realized by a tool. However, when we
load our formal WSMO model and the above Object-Z
definition into an Object-Z type checker, the tool com-
plains that there is a type error. After studying this
problem, we realized that the problem is that accord-
ing to the WSMO documents, the hasType attribute de-
fined for an concept attribute can only have a WSMO
concept as its values. On the other hand, String is a
subclass of literal datatype Value. LiteralValue and
Concept are considered disjointed in many Semantic
Web languages. Thus, the WSMO standard should be
revised as illustrated in Figure 2.

• Making the WSMO language precise and removing
ambiguity
Large sections of the WSMO document are in norma-
tive text, which could result in several divergent inter-
pretations of the language by different users and tool

8A full version of this example accompanies the WSMO release, and
can be found from http://www.wsmo.org/TR/d3/d3.4/v0.1/

118118

Current WSMO specification:
Class attribute sub-Class wsmoElement

hasType type concept
Revised WSMO specification:
Class attribute sub-Class wsmoElement

hasType type concept or dataType

Figure 2. WSMO specification revision.

developers. Furthermore, the documentation makes
many assumptions and implications, which are implic-
itly defined. This could lead to inconsistent conclusion
being drawn. Our formal model of WSMO can be used
to improve the quality of the normative text that defines
the WSMO language, and to help ensure that: a) the
users understand and use the language correctly; b) the
test suite covers all important rules implied by the lan-
guage; and c) the tools developed work correctly and
consistently.

• Reasoning the WSMO by using existing formal
tools directly

Since Semantic Web Service research in general, and
WSMO in particular are still evolving, current verifi-
cation and reasoning tools (though rudimentary) are
also improving. In contrast, there have been decades
of development into mature formal reasoning tools
that are used to verify the validity of software and
systems. By presenting a formal semantic model of
WSMO, many Object-Z and Z tools can be possibly
used for checking, validating and verifying WSMO
model. For example, in our previous work, we have
applied Z/EVES [6, 5] and AA [7] separately to rea-
soning over Web ontologies. In the previous section,
we also applied an Object-Z type checker to validate a
WSMO model. Instead of developing new techniques
and tools, reusing existing tools provides a cheap, but
efficient way to provide support and validation for
standards driven languages, such as WSMO.

• The ease of extendibility

As WSMO is still evolving, an advantage of us-
ing an object-oriented approach in the language
model is to achieve the extendibility of the language
model. Suppose that later the Orchestration of WSMO
were clearly defined. Then, in our model, all that
is required is to simply add and define the class
OrchestrationRule.

OrchestrationRule
TransitionRule

target : wgMediator ∪WebService;

enable⇔

Execute =̂

The introduction of this extension does not involve any
changes to the classes defined in the previous section.
Validation tools can then be used to confirm the valid-
ity of the extended model as can be observed in this
example.

5 Conclusion

WSMO is one of the most important technologies for
Semantic Web service. It complements the existing syn-
tactic Web service standards, by providing a conceptual
model and language for the semantic markup describing
all relevant aspects of general services which are accessible
through a Web service interface. This paper has presented
an Object-Z formal operational semantics of WSMO. To-
gether with our previous work [22], we have present a com-
plete formal model of WSMO. The advantage of this ap-
proach is that the abstract syntax, static and dynamic se-
mantics of each WSMO construct are grouped together and
captured in one single Object-Z class; hence the language
model is more structural, concise and easily extendible. We
believe this OZ specification can provide a useful document
for developing support tools for WSMO.

Acknowledgment

This work is partially supported by the EU-funded TAO
project (IST-2004-026460).

References

[1] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila,
D. McDermott, D. Martin, S. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web
Service Description for the Semantic Web. In First
International Semantic Web Conference (ISWC) Pro-
ceedings, pages 348–363, 2002.

[2] J. Bruijn, H. Lausen, A. Polleres, and D. Fensel. The
web service modelling language wsml: An overview.
In Proceedings of the 3rd European Semantic Web
Conference, pages 590–604, Budva, Montegegro,
June 2006. Springer-Verlag.

119119

[3] R. Chinnici, J. J. Moreau, A. Ryman, and
S. Weerawarana. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 1: Core Lan-
guage. http://www.w3.org/TR/wsdl20/
wsdl20-z.html, 2006.

[4] J. S. Dong and R. Duke. Class Union and Poly-
morphism. In C. Mingins, W. Haebich, J. Potter,
and B. Meyer, editors, Proc. 12th International Con-
ference on Technology of Object-Oriented Languages
and Systems. TOOLS 12, pages 181–190. Prentice-
Hall, November 1993.

[5] J. S. Dong, C. H .Lee, Y. F. Li, and H. Wang. A com-
bined approach to checking web ontologies. In The
13th ACM International World Wide Web Conference
(WWW’04), pages 714–722. ACM Press, May 2004.

[6] J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. Verify-
ing DAML+OIL and Beyond in Z/EVES. In Proc. The
26th International Conference on Software Engineer-
ing (ICSE’04), pages 201–210, Edinburgh, Scotland,
May 2004.

[7] J. S. Dong, J. Sun, and H. Wang. Checking and Rea-
soning about Semantic Web through Alloy. In 12th
Internation Symposium on Formal Methods Europe
(FM’03). Springer-Verlag, September 2003.

[8] R. Duke and G. Rose. Formal Object Oriented Speci-
fication Using Object-Z. Cornerstones of Computing.
Macmillan, March 2000.

[9] Dieter Fensel and E. Motta. Structured development
of problem solving methods. In Proceedings of the
11th Workshop on Knowledge Acquisition, Modeling,
and Management (KAW ’98), Banff, Canada, APR
1998.

[10] Dieter Fensel, Enrico Motta, V. Richard Benjamins,
Monica Crubezy, Stefan Decker, Mauro Gaspari, Rix
Groenboom, William Grosso, Frank van Harmelen,
Mark Musen, Enric Plaza, Guus Schreiber, Rudi
Studer, and Bob Wielinga. The unified problem-
solving method development language upml. Knowl-
edge and Information Systems, 5(1):83–131, 2002.

[11] A. Griffiths and G. Rose. A Semantic Foundation
for Object Identity in Formal Specification. Object-
Oriented Systems, 2:195–215, Chapman & Hall 1995.

[12] W. Johnston. A type checker for Object-Z. Technical
report 96-24, Software Verification Research Centre,
School of Information Technology, The University of
Queensland, Brisbane 4072. Australia, July 1996.

[13] S. K. Kim and D. Carrington. Formalizing UML
Class Diagram Using Object-Z. In R. France and
B. Rumpe, editors, UML’99, Lect. Notes in Comput.
Sci. Springer-Verlag, October 1999.

[14] S. McIlraith, T. Son, and H. Zeng. Semantic web ser-
vices, 2001.

[15] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H.
Ngu, and A. K. Elmagarmid. Business-to-business
interactions: issues and enabling technologies. The
International Journal on Very Large Data Bases,
12(1):59–85, 2003.

[16] Object Management Group. Meta object facility
(MOF) specification, 2002. http://www.omg.
org.

[17] Dumitru Roman, Uwe Keller, Holger Lausen, Jos
de Bruijn, Rubn Lara, Michael Stollberg, Axel
Polleres, Cristina Feier, Christoph Bussler, and Dieter
Fensel. Web services modeling ontology. Journal of
Applied Ontology, 39(1):77–106, 2005.

[18] G. Smith. Extending W for Object-Z. In J. P. Bowen
and M. G. Hinchey, editors, Proceedings of the 9th
Annual Z-User Meeting, pages 276–295. Springer-
Verlag, September 1995.

[19] G. Smith. A fully abstract semantics of classes for
Object-Z. Formal Aspects of Computing, 7(3):289–
313, 1995.

[20] G. Smith. Reasoning about Object-Z specifications. In
Proc. Asia Pacific Software Engineering Conference
’95 (APSEC’95), pages 489–497. IEEE Press, 1995.

[21] W. K. Tan. A Semantic Model of A Small Typed
Functional Language using Object-Z. In J. S. Dong,
J. He, and M. Purvis, editors, The 7th Asia-Pacific
Software Engineering Conference (APSEC’00). IEEE
Press, December 2000.

[22] H. H. Wang, N. Gibbins, T. Payne, A. Saleh, and
J. Sun. A Formal Semantic Model of the Seman-
tic Web Service Ontology (WSMO). In The 12th
IEEE International Conference on Engineering Com-
plex Computer Systems, Auckland, July 2007.

[23] J.C.P. Woodcock and S.M. Brien. W : A logic for Z.
In Proceedings of Sixth Annual Z-User Meeting, Uni-
versity of York, Dec 1991.

120120

	A formal model of semantic Web Service Ontology (WSMO) execution
	Citation

	A Formal Model of Semantic Web Service Ontology (WSMO) Execution

