239 research outputs found

    FLUKA studies of the radiation environment for plasma physics experiments

    Get PDF

    Dynamics of volumetrically heated matter passing through the liquid-vapor metastable states

    Full text link
    Remaining within the pure hydrodynamic approach, we formulate a self-consistent model for simulating the dynamic behavior of matter passing through metastable states in the two-phase liquid-vapor region of the phase diagram. The model is based on the local criterion of explosive boiling, derived by applying the theory of homogeneous bubble nucleation in superheated liquids. Practical application of the proposed model is illustrated with hydrodynamic simulations of a volumetrically uniformly heated planar layer of fused silica SiO2. Implications for experimentally measurable quantities are briefly discussed. A newly developed equation of state, based on the well known QEOS model and capable of handling homogeneous mixtures of elements, was used in the numerical simulations.Comment: 14 pages, 9 figure

    Creation of a homogeneous plasma column by means of hohlraum radiation for ion-stopping measurements

    Full text link
    In this work, we present the results of two-dimensional radiation-hydrodynamics simulations of a hohlraum target whose outgoing radiation is used to produce a homogeneously ionized carbon plasma for ion-beam stopping measurements. The cylindrical hohlraum with gold walls is heated by a frequency-doubled (λl=526.5\lambda_l = 526.5 μm\mu m) 1.41.4 nsns long laser pulse with the total energy of El=180E_l = 180 JJ. At the laser spot, the peak matter and radiation temperatures of, respectively, T380T \approx 380 eVeV and Tr120T_r \approx 120 eVeV are observed. X-rays from the hohlraum heat the attached carbon foam with a mean density of ρC=2\rho_C = 2 mg/cm3mg/cm^3 to a temperature of T25T \approx 25 eVeV. The simulation shows that the carbon ionization degree (Z3.75Z \approx 3.75) and its column density stay relatively stable (within variations of about ±7%\pm7\%) long enough to conduct the ion-stopping measurements. Also, it is found that a special attention should be paid to the shock wave, emerging from the X-ray heated copper support plate, which at later times may significantly distort the carbon column density traversed by the fast ions.Comment: 12 pages, 12 figure

    Simulations of a conical target for Warm Dense Matter-experiments

    Get PDF

    2D simulations of Hohlraum Targets for laser-plasma experiments and ion stopping measurements in hot plasmas

    Get PDF

    Coulomb plasmas in outer envelopes of neutron stars

    Get PDF
    Outer envelopes of neutron stars consist mostly of fully ionized, strongly coupled Coulomb plasmas characterized by typical densities about 10^4-10^{11} g/cc and temperatures about 10^4-10^9 K. Many neutron stars possess magnetic fields about 10^{11}-10^{14} G. Here we briefly review recent theoretical advances which allow one to calculate thermodynamic functions and electron transport coefficients for such plasmas with an accuracy required for theoretical interpretation of observations.Comment: 4 pages, 2 figures, latex2e using cpp2e.cls (included). Proc. PNP-10 Workshop, Greifswald, Germany, 4-9 Sept. 2000. Accepted for publication in Contrib. Plasma Phys. 41 (2001) no. 2-

    High-temperature plasma of Ge generated by the PHELIX laser

    Get PDF
    corecore