44 research outputs found

    Kajian Teknologi Budidaya dan Kelayakan Ekonomi USAhatani Kedelai dengan Pendekatan Pengelolaan Tanaman Terpadu di Lahan Pasang Surut Jambi

    Full text link
    Assesement of Cultivation Technology and Economic Feasibility of Soybean Farming Systemwith Integrated Crop Management Approach in Tidal Land at Jambi Province. This assessment aims todetermine the performance of cultivation technology and the economic feasibility of soybean farming systemthrough integrated plant control on tidal swamp land. Assesment was conducted on dry season 2007 in BandarJaya village, Rantau Rasau sub District, Tanjung Jabung Timur District, Jambi Province, on tidal land withacid soils and sulfate land type C. Technology packed involved: seed quality, varieties, manure and dolomiteapplication, fertilizer dosage, water management, and pest diseases control. Data were collected through directobservation in the field with Participation Rural Appraisal (PRA) approach. Descriptive data were analyzedqualitatively and quantitatively using partial budget analysis with the economic parameters of R/C, MBCR,PBE, and TIH. The assessment indicated that the PTT technology is able to increase productivity .6 fold, andit was economically improve the profitability of farming for Rp.2,528,720/ha with MBCR score of 3.68, so thatthe PTT technology was feasible to be implemented. In order for PTT technology development to continue, itneeds supply of inputs, alternative fertilizer, seed multiplication by farmer, and direct supervision. Disseminationefforts need to be done both through technology and communication, and through direct propagation.Key words: Tidal swamp land, economic feasibility Tujuan pengkajian ini adalah untuk mengetahui keragaan teknologi budidaya, dan kelayakan ekonomiusahatani kedelai dengan pendekatan Pengelolaan Tanaman Terpadu di lahan pasang surut. Pengkajian inidilaksanakan pada MK 2007 di desa Bandar Jaya Kecamatan Rantau Rasau Kabupaten Tanjung Jabung TimurProvinsi Jambi dilahan pasang surut dengan tipologi lahan sulfat masam dan tipe genangan air C. Paketteknologi PTT kedelai meliputi benih bermutu, varietas, penggunaan pupuk kandang dan dolomit, dosis dan carapemupukan, pengaturan tata air dan pengendalian OPT. Sebanyak enam petani kooperator yang menggunakanpaket teknologi PTT dilibatkan dalam pengkajian ini. Data diperoleh dengan pengamatan langsung dilapangan,data primer dikumpulkan dengan pendekatan PRA. Analisis data dilakukan secara deskripif kualitatif dankuantitatif menggunakan analisis anggaran parsial dengan parameter ekonomi R/C, MBCR, TIP dan TIH.Hasil pengkajian menunjukkan bahwa teknologi PTT mampu meningkatkan produktivitas ,6 kali lipat,Kajian Teknologi Budidaya dan Kelayakan Ekonomi Usahatani Kedelai Dengan Pendekatan Pengelolaan Tanaman Terpadu diLahan Pasang Surut Jambi (Jumakir dan Abdullah Taufiq)2dan secara ekonomis meningkatkan keuntungan USAhatani sebesar Rp.2.528.720/ha dengan nilai MBCR 3,68sehingga teknologi PTT layak untuk diterapkan. Agar pengembangan teknologi PTT berlanjut, diperlukandukungan saprodi dan harga terjangkau, penggunaan pupuk alternatif dan pemanfaatan agen hayati sertapenangkaran benih oleh petani. Disamping itu masih perlu pembinaan dan pendampingan oleh petugas. Upayadiseminasi perlu dilakukan baik melalui teknologi informasi dan komunikasi maupun diseminasi langsung

    Effect of Lime Application on Soil Properties and Soybean Yield on Tidal Land

    Full text link
    The problems of soybean cultivation on tidal land are low in soil fertility, aluminum (Al) toxicity and poor availability of macro nutrients. Soil acidity and Al toxicity are often fixed by liming. The research aimed to determine the calculation method of lime requirement and its application method for soybean on tidal land. The research was conducted on tidal land in South Kalimantan, Indonesia. Treatment consisted of two factors and arranged in randomize complete block design, replicated three times. The first factor was the method of lime rate calculation: (1) no liming,(2) liming based on10% of Al saturation, (3) liming based on 20% of Al saturation, (4) liming based on 30% of Al saturation, (5) liming based on 0.5 x exchangeable Al, and (6) liming based on 1 x exchangeable Al. The second factor was the method of application: (1) surface,and (2) mixed within 20 cm soil depth. The results showed that liming by mixing dolomite with soil within 20 cm depth resulted in 8% higher plant height compared to that applied on the soil surface. The highest yield was obtained when liming at rate equivalent to 10% of Al saturation was mixed with soil within 20 cm depth

    Pengelolaan Kesuburan Lahan Kering Masam untuk Tanaman Kedelai

    Full text link
    Pengembangan kedelai, karena luasan lahan ini hampir 29% dari total luas Indonesia. Kendala utama yang terdapat di lahan ini adalah tingkat kesuburan yang rendah, meliputi pH rendah, bahan organik rendah, kahat P, K, Ca dan Mg serta Al-dd, Fe dan Mn yang tinggi yang berpotensi meracuni tanaman. Peningkatan produktivitas lahan kering masam dapat dilakukan dengan (1) mencukupi kebutuhan hara yang berada pada status kahat dengan cara menambahkan masukan pupuk, (2) mengurangi pengaruh negatif dari sifat fisik dan kimia tanah dengan cara menambahkan bahan amelioran atau agen hayati, (3) mengembangkan varietas yang adaptif pada lingkungan masam, dan (4) kombinasi pendekatan 1, 2 dan 3 tersebut di atas. Secara umum, peningkatan produksi pertanian dapat dicapai melalui dua cara, yaitu: (1) memperluas areal pertanian (ekstensifikasi), dengan membuka daerah-daerah baru dan mengusahakan sebagai daerah pertanian, dan (2) meningkatkan produktivitas lahan (intensifikasi) melalui penerapan teknologi inovatif

    Variability of Soybean [Glycine Max (L) Merr] Growth in Relation to Chemical Properties of Ultisol From East Lampung

    Full text link
    Acidic dry land in Lampung is potential for soybean development area. Low soybean yield in farmer level is one of factor causing its’ low competitiveness. Soil fertility is the main constrain related to low yield of soybean. Objective of the research was to diagnose a cause of poor soybean growth on dry land Ultisol at Sukadana sub District, East Lampung District. Soil and soybean plant samples were collected from farmers’ field at Sukadana ilir village during planting season April – July year 2010. Plant and soil samples were taken when soybean at R1 stage (starting to bloom) using stratified random sampling method. The result showed that variability of soybean growth on Ultisol at Sukadana, East Lampung related to variability of soil pH, exchangeable Al, exchangeable K, Ca, and Mg. The poor soybean growth was due to low soil pH, high exchangeable Al, low exchangeable K, Ca, and Mg.Keywords: Chemical properties, Glycine max, UltisolKeywords: Taufiq A and A Wijanark. 2012. Variability of Soybean [Glycine max (L) Merr] Growth in Relation to Chemical Properties of Ultisol from East Lampung. J Trop Soils 17: 37-43. Doi: 10.5400/jts.2012.17.1.37][Permalink/DOI: www.dx.doi.org/10.5400/jts.2012.17.1.37

    Respons Tanaman Kedelai terhadap Lingkungan Tumbuh

    Full text link
    Tanaman kedelai (Glycine max L.) dapat memberikan respon positif dan negatif terhadap Perubahan lingkungan tumbuh di atas tanah maupun di dalam tanah. Respon tersebut dapat diketahui dari Perubahan Perubahan fenotipik dan fisiologis tanaman. Lingkungan di atas tanah yang berpengaruh terhadap pertumbuhan tanaman kedelai terutama adalah lama dan intensitas penyinaran, suhu udara dan kandungan CO2 di atmosfer. Lama penyinaran yang optimal adalah 10-12 jam. Berkurangnya intensitas cahaya matahari menyebabkan tanaman tumbuh lebih tinggi, ruas antar buku lebih panjang, jumlah daun dan jumlah polong lebih sedikit, dan ukuran biji semakin kecil. Respon kedelai terhadap Perubahan suhu tergantung pada fase pertumbuhan. Suhu yang sesuai pada fase perkecambahan adalah 15-22oC, fase pembungaan 20-25oC, dan pada fase pemasakan 15-22oC. Peningkatan CO2 atmosfer dari 349 µL menjadi 700 µL meningkatkan laju pertukaran karbon (C), menurunkan laju transpirasi, dan meningkatkan efisiensi penggunaan air. Kondisi lingkungan di dalam tanah yang berperan terhadap pertumbuhan kedelai terutama adalah tekstur tanah, kadar air tanah dan unsur hara, unsur-unsur toksik, kemasaman tanah, suhu tanah, dan salinitas. Kedelai tumbuh baik pada tanah bertekstur ringan hingga berat, namun tanah yang padat (BI >1,38 kg/m3) tidak sesuai untuk kedelai. Kebutuhan air tanaman kedelai pada fase generatif lebih tinggi dibandingkan pada fase vegetatif, sehingga pada fase generatif lebih peka terhadap kekeringan terutama pada fase pembungaan hingga pengisian polong. Kandungan air optimal adalah 70-85% dari kapasitas lapangan. Kandungan unsur hara tanah harus di atas batas kekahatan agar tanaman tumbuh optimal. Nilai kritis suatu unsur hara dalam tanah beragam tergantung jenis tanah dan metode analisis yang digunakan. Pengaruh suhu tanah terutama pada fase perkecambahan, dan suhu tanah optimal adalah 24,2-32,8°C. Kedelai agak sensitif terhadap kemasaman tanah, unsur-unsur toksik, dan salinitas. Nilai kritis pH, Al, Mn, dan salinitas berturut-turut adalah pH 5,5, Al-dd 1,33 me/100 g, Mn 3,3 ppm, dan 1,3 dS/m. Rhizobium berperan dalam memasok kebutuhan N tanaman kedelai, namun inokulasi tidak efektif pada tanah yang sering ditanami kedelai

    Respon Morfologi Empat Genotip Kedelai terhadap Cekaman Salinitas

    Full text link
    Salinity stress affects metabolic processes of plants and it can cause changes in plant morphology. Information on soybean morphological characters due to salinity stress is important for breeding programs of soybean salinity tolerant. The objective of research was to study the response of morphological characters of four soybean genotypes to salinity stress. The research was conducted in a greenhouse at Iletri (Indonesian Legumes and Tuber Crops Research Institute), Malang in 2013/2014. Four soybean genotypes consisted of Wilis and Tanggamus varieties ( salinity sensitive), IAC100/Bur//Mal-10-KP-21-50 (G1) and Argopuro // IAC100 (G2) that are tolerant to salinity. The genotypes were tested at five levels of soil salinity i.e. 1.5 dS/m, 6.6 dS/m, 10.9 dS/m, 13.4 dS/m and 15.6 dS/m. Treatments arranged in randomized complete block design, replicated three times. The results showed that increasing salinity decreased plant height, leaf chlorophyll content index (CCI) and seed size, and increased scorch score in all genotypes. Increasing salinity reduced CCI by 45% on sensitive genotypes, but no symptoms on tolerant genotypes. Density and lenght of trichomes of G1 and G2 genotypes were higher than Wilis and Tanggamus. Stomata of G1 and G2 genotypes opened 93% wider than Wilis and Tanggamus. At salinity level 15.6 dS/m, seed size of G1 was 9.4 g/100 seeds and G2 was 10.2 g/100 seeds, while Wilis and Tanggamus could not perform seeds. G1 and G2 genotypes are potential to be developed as new soybean variety tolerant to salinity up to 15.6 dS/m

    Tanggap Varietas Kacang Hijau Terhadap Cekaman Salinitas

    Full text link
    The response of mungbean varieties to salinity stress was evaluated using pot experiment in green house at Indonesian Legumes and Tuber Crops Research Institute in Malang from July to September 2012. Two factors of sixty treatments were arranged in a randomized complete block design, replicated four times. The first factor was six water salinity levels, namely check (ECw 0.5 dS/m), 4.0, 7.1, 10.1, 13.1, and 15.8 dS/m. The second factor was ten mungbean varieties, namely Vima 1, Kutilang, Sampeong, Perkutut, Murai, Kenari, Sriti, Merpati, Betet, dan Walet. Data collection consisted of grain yield and yield components, plant biomass, chlorophyll content index (CCI), plant height, leaf area, and relative water content of leaf (RWC). The results showed that increasing water salinity increased soil salinity (ECs). Increasing salinity did not significantly affect total leaf area per plant, but significantly reduced root dry weight, CCI, number of filled pods, pods and seed dry weight per plant, and weight of 100 grains. Those variables were reduced by 11% to 37% at ECs of 2.65 dS/m. Plant height decreased by 10%, shoot dry weight by 22% and leaf relative water content by 10% at ECs of 6.27, 3.29 and 8.81 dS/m, consecutively. Chlorophyll content index, grain yield and yield components were more sensitive to salinity stress than were plant height, shoot biomass, and leaf area. Based on grain yield reduction, there was different salinity tolerance among the mungbean varieties tested. Vima 1 variety was tolerant up to ECs of 6.40-12.49 dS/m. Murai, Kenari, Sriti, and Betet varieties were tolerant up to ECs of 2.87-5.68 dS/m. Kutilang, Sampeong, Perkutut, Merpati, and Walet varieties were tolerant up to ECs of 1.79-2.65 dS/m. There was no indication that the degree of tolerance of these varieties related to Na and K content in the shoot and root of the plant at 37 days after planting. The critical ECs value for mungbean varietal testing was 1.79-2.65 dS/m
    corecore