109 research outputs found

    How the Dorsolateral Prefrontal Cortex Controls Affective Processing in Absence of Visual Awareness – Insights From a Combined EEG-rTMS Study

    Get PDF
    The dorsolateral prefrontal cortex (DLPFC) plays a key role in the modulation of affective processing. However, its specific role in the regulation of neurocognitive processes underlying the interplay of affective perception and visual awareness has remained largely unclear. Using a mixed factorial design, this study investigated effects of inhibitory continuous theta-burst stimulation (cTBS) of the right DLPFC (rDLPFC) compared to an Active Control condition on behavioral (N = 48) and electroencephalographic (N = 38) correlates of affective processing in healthy Chinese participants. Event-related potentials (ERPs) in response to passively viewed subliminal and supraliminal negative and neutral natural scenes were recorded before and after cTBS application. We applied minimum-norm approaches to estimate the corresponding neuronal sources. On a behavioral level, we found evidence for reduced emotional interference by, and less negative and aroused ratings of negative supraliminal stimuli following rDLPFC inhibition. We found no evidence for stimulation effects on self-reported mood or the behavioral discrimination of subliminal stimuli. On a neurophysiological level, rDLPFC inhibition relatively enhanced occipito-parietal brain activity for both subliminal and supraliminal negative compared to neutral images (112–268 ms; 320–380 ms). The early onset and localization of these effects suggests that rDLPFC inhibition boosts automatic processes of “emotional attention” independently of visual awareness. Further, our study reveals the first available evidence for a differential influence of rDLPFC inhibition on subliminal versus supraliminal neural emotion processing. Explicitly, our findings indicate that rDLPFC inhibition selectively enhances late (292–360 ms) activity in response to supraliminal negative images. We tentatively suggest that this differential frontal activity likely reflects enhanced awareness-dependent down-regulation of negative scene processing, eventually leading to facilitated disengagement from and less negative and aroused evaluations of negative supraliminal stimuli

    The Neuroanatomical Basis of Two Subcomponents of Rumination: A VBM Study

    Get PDF
    Rumination is a trait that includes two subcomponents, namely brooding and reflective pondering, respectively construed as maladaptive and adaptive response styles to negative experiences. Existing evidence indicates that rumination in general is associated with structural and functional differences in the anterior cingulate cortex (ACC) and the dorsal lateral prefrontal cortex (DLPFC). However, conclusive evidence on the specific neural structural basis of each of the two subcomponents is lacking. In this voxel-based morphometry study, we investigated the independent and specific neural structural basis of brooding and reflective pondering in 30 healthy young adults, who belonged to high or low brooding or reflective pondering groups. Consistent with past research, modest but significant positive correlation was found between brooding and reflective pondering. When controlling for reflective pondering, high-brooding group showed increased gray matter volumes in the left DLPFC and ACC. Further analysis on extracted gray matter values showed that gray matter of the same DLPFC and ACC regions also showed significant negative effects of reflective pondering. Taken together, our findings indicate that the two subcomponents of rumination might share some common processes yet also have distinct neural basis. In view of the significant roles of the left DLPFC and ACC in attention and self-related emotional processing/regulation, our findings provide insight into how the potentially shared and distinct cognitive, affective and neural processes of brooding and reflective pondering can be extended to clinical populations to further elucidate the neurobehavioral relationships between rumination and prefrontal abnormality

    Potential Therapeutic Effects of Meditation for Treating Affective Dysregulation

    Get PDF
    Affective dysregulation is at the root of many psychopathologies, including stress induced disorders, anxiety disorders, and depression. The root of these disorders appears to be an attenuated, top-down cognitive control from the prefrontal cortices over the maladaptive subcortical emotional processing. A form of mental training, long-term meditation practice can trigger meditation-specific neuroplastic changes in the brain regions underlying cognitive control and affective regulation, suggesting that meditation can act as a kind of mental exercise to foster affective regulation and possibly a cost-effective intervention in mood disorders. Increasing research has suggested that the cultivation of awareness and acceptance along with a nonjudgmental attitude via meditation promotes adaptive affective regulation. This review examined the concepts of affective regulation and meditation and discussed behavioral and neural evidence of the potential clinical application of meditation. Lately, there has been a growing trend toward incorporating the “mindfulness” component into existing psychotherapeutic treatment. Promising results have been observed thus far. Future studies may consider exploring the possibility of integrating the element of “compassion” into current psychotherapeutic approaches

    Cognitive and Emotional Appraisal of Motivational Interviewing Statements: An Event-Related Potential Study

    Get PDF
    The counseling process involves attention, emotional perception, cognitive appraisal, and decision-making. This study aimed to investigate cognitive appraisal and the associated emotional processes when reading short therapists' statements of motivational interviewing (MI). Thirty participants with work injuries were classified into the pre-contemplation (PC, n = 15) or readiness stage of the change group (RD, n = 15). The participants viewed MI congruent (MI-C), MI incongruent (MI-INC), or control phrases during which their electroencephalograms were captured. The results indicated significant Group × Condition effects in the frontally oriented late positive complex (P600/LPC). The P600/LPC's amplitudes were more positive-going in the PC than in the RD group for the MI congruent statements. Within the PC group, the amplitudes of the N400 were significantly correlated (r = 0.607–0.649) with the participants' level of negative affect. Our findings suggest that the brief contents of MI statements alone can elicit late cognitive and emotional appraisal processes beyond semantic processing

    Fronto-cerebellar connectivity mediating cognitive processing speed

    Get PDF
    Processing speed is an important construct in understanding cognition. This study was aimed to control task specificity for understanding the neural mechanisms underlying cognitive processing speed. Forty young adult subjects performed attention tasks of two modalities (auditory and visual) and two levels of task rules (compatible and incompatible). Block-design fMRI captured BOLD signals during the tasks. Thirteen regions of interest were defined with reference to publicly available activation maps for processing speed tasks. Cognitive speed was derived from task reaction times, which yielded six sets of connectivity measures. Mixed-effect LASSO regression revealed six significant paths suggestive of a cerebello-frontal network predicting the cognitive speed. Among them, three are long range (two fronto-cerebellar, one cerebello-frontal), and three are short range (fronto-frontal, cerebello-cerebellar, and cerebello-thalamic). The long-range connections are likely to relate to cognitive control, and the short-range connections relate to rule-based stimulus-response processes. The revealed neural network suggests that automaticity, acting on the task rules and interplaying with effortful top-down attentional control, accounts for cognitive speed

    Lying about the Valence of Affective Pictures: An fMRI Study

    Get PDF
    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception

    Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats

    Get PDF
    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress
    corecore