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a b s t r a c t 

Processing speed is an important construct in understanding cognition. This study was aimed to control task 
specificity for understanding the neural mechanisms underlying cognitive processing speed. Forty young adult 
subjects performed attention tasks of two modalities (auditory and visual) and two levels of task rules (compatible 
and incompatible). Block-design fMRI captured BOLD signals during the tasks. Thirteen regions of interest were 
defined with reference to publicly available activation maps for processing speed tasks. Cognitive speed was 
derived from task reaction times, which yielded six sets of connectivity measures. Mixed-effect LASSO regression 
revealed six significant paths suggestive of a cerebello-frontal network predicting the cognitive speed. Among 
them, three are long range (two fronto-cerebellar, one cerebello-frontal), and three are short range (fronto-frontal, 
cerebello-cerebellar, and cerebello-thalamic). The long-range connections are likely to relate to cognitive control, 
and the short-range connections relate to rule-based stimulus-response processes. The revealed neural network 
suggests that automaticity, acting on the task rules and interplaying with effortful top–down attentional control, 
accounts for cognitive speed. 

1. Introduction 

Processing speed is a measure of cognitive ability and an index 
reflecting the severity of various neurological pathologies. Psychome- 
tric studies have revealed that common latent factors exist among 
all common speed measures ( Roberts and Stankov, 1999 ), and pro- 
cessing speed (PS) mediates working memory and executive func- 
tions ( Verhaeghen, 2011 ). Functional MRI studies ( Forn et al., 2009 ; 
Habeck et al., 2016 ) have shown that processing speed tasks with dif- 
ferent task demands activate frontal, parietal, and occipital cortices and 
the cerebellum, which is known as a task-positive network ( Fox et al., 
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2005 ). In the current study, we investigated the interactions among the 
interregional brain activities within the TPN associated with the speed- 
related processes. 

Using psychometric paradigms, such as digit–symbol substitution 
and symbol search tasks ( Wechsler, 1981 ), faster processing speed was 
found to be commonly associated with decreased activations in the dor- 
sal and medial frontal cortices but increased activations in the ven- 
tral lateral prefrontal cortex (PFC) and the insular, parietal and occip- 
ital regions ( Akbar et al., 2016 ; Forn et al., 2013 ; Motes et al., 2011 ; 
Rypma et al., 2006 ; Sweet et al., 2005 ; Woodward et al., 2013 ). These 
studies further suggested that faster processing speed involves reduced 
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reliance of executive function and efficient visuospatial processes. Find- 
ings of other studies using reaction time (RT) tasks, however, revealed 
negative speed-activation correlates were only found in the medial and 
dorsal frontal cortices ( Hahn et al., 2007 ; Hu et al., 2014 ; Naito et al., 
2000 ), which raises the question of the factors behind the inconsis- 
tent findings on the neural substrates that showed increases in acti- 
vations, such as those in the occipital region. Paradigm- and stimulus- 
specific speed-RT correlates were previously reported, such as the lin- 
gual gyrus in a phonological go/no-go paradigm ( Zhang et al., 2018 ) and 
the fusiform area in a visual letter search task ( Madden et al., 2007 ) 
and the ventral lateral PFC in an audial choice RT task with syllables 
( Binder et al., 2004 ). Therefore, we conjecture that task-specific con- 
tent, such as visual modality, and processing, such as search and com- 
parison, are likely to contribute to the existing inconsistent findings of 
processing speed. 

Functional connectivity (FC) is commonly used to identify interre- 
gional interactions, which are nondirectional and have zero-lag cor- 
relation. Independent component analysis on FC revealed that faster 
processing speed showed decreased coactivation of the frontoparietal 
component ( Forn et al., 2013 ) and increased coactivation of the vi- 
sual and cerebellar components ( Silva et al., 2019 ). Two other com- 
mon FC methods are Pearson’s correlation (e.g. Gao et al., 2020 ) and 
psychophysiological interaction (e.g. Takeuchi and Kawashima, 2012 ). 
One prominent drawback of these methods, which are based on bivari- 
ate connectivity, is the possible over-representation of the interregional 
relationships ( Sanchez-Romero and Cole, 2020 ) and intertwined activa- 
tions among the identified neural substrates ( Reid et al., 2019 ). Methods 
for tackling the issues mentioned can be applying effective connectiv- 
ity (EC) and/or multivariate methods to the analyses, which are able 
to delineate concurrent and complex activations in multiple neural sub- 
strates, such as partial correlation ( Smith et al., 2011 ) and vector au- 
toregression ( Deshpande et al., 2010 ). No study on processing speed has 
been found using a multivariate method. When compared with FC, EC 

is directional and has non-zero lag correlation, which can further char- 
acterize the task-related interregional coupling. Granger causality on 
EC showed higher processing efficiency was associated with decreased 
influences from dorsal PFC to posterior regions ( Biswal et al., 2010 ; 
Rypma et al., 2006 ). Analyzing RT-correlates with FC revealed shorter 
RTs positively correlated with connectivity among the nodes of the dor- 
sal attention networks (DAN, bilateral frontal eye-field and intrapari- 
etal sulcus, Corbetta and Shulman, 2002 ) and the ventral attention net- 
work (VAN, right anterior and posterior middle frontal gyrus, and right 
temporoparietal junction, Corbetta and Shulman, 2002 ). In the same 
study, the results of the EC revealed stronger DAN →VAN and weaker 
VAN →DAN influences that positively correlated with shorter RTs. Addi- 
tional results brought by effective connectivity largely enrich the speci- 
ficity and robustness of neural activities underlying processing speed. 

The present study aimed to address the possible task-related biases 
by employing a series of simple stimulus–response (S–R) mapping tasks 
of visual and audial modalities. The purpose of this multitask design 
was to address the modality- and function-specific biases mentioned 
above. The arrow task ( Lee et al., 2006 ; 2005 ), originally a visual S–
R compatibility task, was adapted into visual and audial forms ( Fig. 1 ). 
Responses involved simple reactions with respect to what was viewed 
or heard for better control of the required sensorimotor processing time 
( Jensen, 2006 ). A block, rather than event-related design, was employed 
to minimize the task-switching effect ( Barber and Carter, 2004 ; Liu et al., 
2015 ) and across-trial uncertainty ( Bates and Stough, 1998 ; Fan, 2014 ). 
Furthermore, we aimed to address the methodological shortfalls in pre- 
vious studies that utilized Pearson’s correlation and psychophysiolog- 
ical interaction (PPI) for building connectivity-based models to pre- 
dict processing speed. In this study, we established six connectivity 
measures, including four multivariate-based indices, for conducting the 
model comparisons. A cognitive speed variable was constructed by re- 
gressing out the RT of the control tasks from that of the experimental 
tasks for controlling the sensorimotor components. The functional con- 

nectivity model building was based on mixed-effect LASSO regression. 
To our knowledge, this paper is the first in the field to employ the cross- 
modality multitask design and to compare results yielded from six meth- 
ods for modeling the interregional interactions’ subserving processing 
speed. 

2. Method 

2.1. Participants 

Forty healthy young adults aged 18–28 were recruited from local 
communities to participate in the study. They all had a high school edu- 
cation or higher. The final sample included 35 participants (21.5 ± 2.1 
years, 14 females), with five participants excluded from the analysis. 
The reasons for the exclusion included missing or premature responses 
( < 100 ms) and error trials exceeding 30% of the trials in any one of 
the task conditions. All of the participants had normal or corrected-to- 
normal visual acuity based on the E Standard Logarithm Eyesight Ta- 
ble, as well as normal auditory ability determined by passing a pure- 
tone detection test at 300–1000 Hz octave frequencies. All participants 
were right-handed, based on the Edinburgh Handedness Questionnaire 
( Oldfield, 1971 ). They also passed screening tests for cognitive impair- 
ment (Montreal Cognitive Assessment, Beijing Version ( Yu et al., 2012 ), 
MoCA < 26) and depressive mood (Hamilton Rating Scale for Depression 
( Frank et al., 1991 ), HAMD ≥ 7) and had no known history of neuro- 
logical diseases, substance abuse, or smoking. No MRI scan contraindi- 
cations were identified. Each participant was informed of the purposes 
of the study, and informed consent was obtained prior to the training 
and experimental procedures. Ethical approval was obtained from the 
Ethics Committee of Fujian University of Traditional Chinese Medicine. 

2.2. Processing speed task 

The Arrow Task ( Lee et al., 2005 ; 2006 ) was used to measure the pro- 
cessing speed. It involved a two-choice S–R mapping task with compati- 
ble (COM), incompatible (INC), and simple RT control conditions (NEU) 
( Fig. 1 ). In the COM, the participant pressed the “UP ” button when an 
upward arrow appeared and the “DOWN ” button when a downward ar- 
row appeared ( Fig. 1 ). In the INC, the participant pressed the “UP ” but- 
ton for a downward arrow and the “DOWN ” button for an upward arrow. 
The NEU involved the participant pressing any button upon viewing a 
vertical line without an arrowhead. As the stimuli that appeared in these 
conditions were visual images, they were called COM-VIS, INC-VIS, and 
NEU-VIS. The audial version of the same conditions were COM-AUD, 
INC-AUD, and NEU-AUD, with upward arrows, downward arrows, and 
vertical lines replaced with high-pitch, low-pitch, and mid-pitch tones, 
respectively. The task trials were organized using a block design, with 
five blocks in each of the three visual and audial conditions. The vi- 
sual run had 15 visual blocks, and the audial run had 15 audial blocks. 
The three task blocks were arranged in an A-B-C-A-B-C sequence, and 
the task conditions were counterbalanced across the participants. Each 
block included 10 trials, with an equal number of trials for the COM 

and INC mapping rules, presented in randomized order. There were 50 
trials in each of the 3 × 2 task conditions. Instructions for the conditions 
were presented to each participant for 4 s preceding each block. For 
each trial, the stimulus was presented for 800 ms, followed by a fixa- 
tion of 1000 ms, during which time the response was made. Each block 
was completed in 18 s. The total duration for completing one run was 
350 s. The resting period between each run was 10 s. 

2.3. Analysis of behavioral data 

Trials with RTs shorter than 100 ms were excluded from the anal- 
yses. Mean RTs were calculated by fitting the RTs of the correct trials. 
Accuracy rate (ACC) was defined as the number of accurate trials di- 
vided by the number of accepted trials. The RT and ACC data were fit- 
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Fig. 1. Schematic diagram describing the adapted Arrow Task in three conditions (compatible, incompatible, and control) crossed with two modalities (visual and 
audial). 

ted to a linear mixed model, where subjects were modelled as a random 

effect. The model was fitted with the “lme4 ” R package. Post hoc pair- 
wise comparisons were conducted on all significant effects and corrected 
with Tukey’s test implemented in the “emmeans ” R package. 

2.4. Definition of processing speed and cognitive speed 

Conventionally, PS is measured as the duration between the onset 
time of the stimulus and the behavioral response. However, sensory 
and motor time should be accounted to tap into higher cognitive de- 
mand ( Jensen, 2006 ). Cognitive speed (CS) is defined by regressing out 
the simple RT of the corresponding perceptual modality from the RT 

measured by the Arrow Task ( Jensen and Reed, 1990 ). The RTs for 
each of the four experimental conditions (compatible/incompatible × vi- 
sual/audial) and the RTs for each of the control conditions (vi- 
sual/audial) were fitted into the linear mixed model: 

𝒚 = 𝑿 𝜷 + 𝒁 𝒃 + 𝜀 

where y is a vector of the task RT, X is a matrix of the RTs of the two 
control conditions, Z is a matrix of the RTs of the four experimental 
conditions, and the 𝜀 is extracted from the model as the corrected RTs 
(i.e., CSs). Previous studies employed a similar procedure for extracting 
PS from paper-and-pen tests ( Kansal et al., 2017 ) and computerized tasks 
( Roth et al., 2015 ). The formula above yielded two speed indices, in 
which higher values reflected faster speeds. The ex-Gaussian model was 
fitted with the “retime ” R package, and the model was fitted with the 
“lme4 ” R package. 

2.5. MRI scanning parameters and data preprocessing 

MRI images were acquired from a GE Signa HDxt 3T scanner (Gen- 
eral Electric, Milwaukee, WI, USA) with an eight-channel phased-array 
head coil. A high-resolution anatomical image (MP-RAGE, field of 
view = 240 × 240 mm, slice thickness = 1 mm, gap = 0 mm, slices = 160 
axial slices, acquisition matrix = 256 × 256, TR/TE = 5556/1764 ms, in- 
version time = 450 ms, and flip angle = 15°) and two functional EPI runs 
(axial acquisition, field of view = 240 × 240 mm, slice thickness = 4 mm, 

gap = 0 mm, slices = 40 axial slices, acquisition matrix = 64 × 64, TR/TE 
2000/30 ms, number of volumes = 175, and flip angle = 90°) were ac- 
quired for each subject. 

The session-level analysis was completed with FSL/FEAT (version 
5.0.9) ( Jenkinson et al., 2012 ). Scanner instability and drifting were re- 
duced by removing the beginning five volumes and applying a high-pass 
filter of 1/90 Hz for each run. Head movement artifacts were reduced 
by aligning each volume to the middle volume. Spatial noises were re- 
duced by applying a 5-mm FWHM Gaussian. Artifactual components 
were removed through visual inspection ( Kelly et al., 2010 ) of the inde- 
pendent components obtained with MELODIC. BOLD signals were fitted 
with gamma-convoluted task models and nuisance regressors, including 
head motion and temporal derivatives. Two task-to-baseline contrasts 
were obtained. The ICA-cleaned functional imaging data is available at 
https://github.com/clivehywong/2021CPS . 

Spatial normalizations were performed using Advanced Normal- 
ization Tools version 2.2.0 ( Avants et al., 2014 ) with the MNI tem- 
plate. Field inhomogeneity in the mean functional and structural 
images of each subject were corrected with N4BiasFieldCorrection. 
The functional-to-structural rigid transformation matrix and structural- 
to-template high-dimensional diffeomorphic deformation were calcu- 
lated with antsIntermodalityIntrasubject.sh and antsRegistrationSyN.sh 
(transformation matrix and deformation field are available at https:// 
github.com/clivehywong/2021CPS ). The latter implemented the sym- 
metric normalization method ( Avants et al., 2008 ), which is regarded 
as having the best performance among similar tools ( Klein et al., 2009 ). 
All contrasts of parameter estimates (COPEs) predicted from FEAT were 
normalized to the MNI template, combining rigid and diffeomorphic 
transformations by antsApplyTransforms for the extraction of activa- 
tions of the regions of interest (ROIs). 

2.6. Defining regions of interest 

The ROIs submitted for analyses in this study were 
based on the activation maps generated from three PS tasks 
( Razlighi et al., 2017 ) and were retrieved from NeuroVault 
( https://identifiers.org/neurovault.collection:857 ). These PS tasks 
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Fig. 2. Schematic diagram for regions of interest and time-series data extraction. (A) The workflow for extracting the ROIs. (B) Selected ROI masks based on the 
activation maps of digit–symbol, letter comparison, and pattern comparison tasks reported by Razlighi et al. (2017) ; the green–yellow gradient represents minimum 

Z values; the red cluster represents ROI masks. (C) Extraction of task-specific time-series data. LMFC: left medial frontal cortex. RMFC: right medial frontal cortex. 
LFEF: left frontal eye field. RFEF: right frontal eye field. LIFJ: left inferior frontal junction. RIFJ: right inferior frontal junction. LIPS: left intraparietal sulcus. RIPS: 
right intraparietal sulcus. LTHAL: left thalamus. RTHAL: right thalamus. LCH6: left cerebellar hemisphere lobule VI. RCH6: right cerebellar hemisphere lobule VI. 
MCV6: medial cerebellar vermis VI. 

were digit–symbol, letter comparison, and pattern comparison. The 
detailed task-taking processes of each task can be found in the work of 
Razlighi et al. (2017) . In brief, the digit–symbol task involved pairing 
digits to symbols, and the letter and pattern comparison tasks involved 
matching two strings or figures, respectively. Participants responded 
by pressing designated buttons on a response pad. 

The activation maps were resampled to 2 mm isotropic voxels, and 
the voxel-wise minimum Z was calculated. Each map was split into 
left/right hemispheres and cerebellum to ensure anatomical homogene- 
ity of the ROI masks. The maps were then parsed into smaller regions 
using the watershed method ( Satterthwaite et al., 2013 ). The initial Z 
threshold and the merging threshold were set to 10 and 13, respectively, 
and the dropping and merging thresholds were set to 100. This enabled 
clusters with smaller than 100 voxels to be merged with the neighboring 
clusters or removed. To mitigate the inhomogeneity introduced by the 
inconsistent and extended sizes of the ROIs, the clusters were shrunk 
to approximately 150 voxels by increasing the Z threshold from 11 to 
18 with a step of 0.05 by using an in-house script ( Arslan et al., 2018 ). 
The cluster forming procedure is illustrated in Fig. 2 A, and the extracted 
ROIs are shown in Fig. 2 B. 

2.7. Activation and connectivity predictors 

Six sets of interregional connectivity measures and the regional ac- 
tivation were estimated. Activation predictors were extracted from the 
parameter estimates of the first-level contrasts. Generalized psychophys- 

iological interaction (gPPI) was estimated with the original time series, 
and the rest of the measures were calculated with windowed time se- 
ries. Pearson’s correlations were estimated with the “base ” R package; 
partial and semi-partial correlations were estimated with the “ppcor ” R 

package. For directed path predictors, including gPPI, semi-partial cor- 
relations, and first- and second-order multivariate vector autoregression 
(VAR(1) and VAR(2)), after solving the equations for the 𝑛 ROIs, a 𝑛 × 𝑛 

matrix with dimension 𝑛 2 was obtained. The coefficients representing 
self-loops were excluded from the analysis, leaving 𝑛 2 − 𝑛 path coeffi- 
cients. For undirected path predictors, the lower triangle was a mirror 
of the upper triangle of the 𝑛 × 𝑛 matrix, and only the upper triangle was 
retained, leaving 𝑛 × ( 𝑛 − 1 )∕2 path coefficients. The code for the con- 
nectivity estimation is available at https://github.com/clivehywong/ 
2021CPS . 

2.8. Extraction of task-specific windowed time series 

Task-specific windowed time series were required for the 
correlation-based and vector autoregression-based connectivity es- 
timations. BOLD signals within each ROI mask were extracted by 
averaging the signal for all voxels inside the mask ( Fig. 2 B). The 
initial boxcar function of the task blocks was convoluted with the 
hemodynamic response function, and the convoluted series were then 
converted into square waves with a boxcar function. The time series 
were multiplied to the square waves of each individual task to obtain 
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a windowed time series. The windows were concatenated to form the 
final task-specific time series ( Fig. 2 C). 

2.9. Connectivity modelled with generalized psychophysiological interaction 

The gPPI analysis was adapted to estimate contextual functional con- 
nectivity using a linear model: 

𝑥 𝑗 ( 𝑡 ) = 𝑎 𝑖𝑗 + 𝑏 𝑖𝑗 𝑦 𝑘 ( 𝑡 ) + 𝑐 𝑖 𝑥 𝑖 ( 𝑡 ) + 𝑑 𝑖 𝑦 𝑘 ( 𝑡 ) 𝑥 𝑖 ( 𝑡 ) + 𝜀 𝑖 ( 𝑡 ) 

where 𝑥 𝑖 ( 𝑡 ) and 𝑥 𝑗 ( 𝑡 ) are the mean-centered time series of 𝑅𝑂 𝐼 𝑖 (the 
physiological term) and 𝑅𝑂 𝐼 𝑗 ; 𝑦 𝑘 ( 𝑡 ) is the HRF task regressor for task 
k (the psychological term); 𝑎 𝑖 is the intercept; 𝑏 𝑖 , 𝑐 𝑖 , and 𝑑 𝑖 are the pa- 
rameter estimates for the psychological, physiological terms, and inter- 
action term; and 𝜀 𝑖 ( 𝑡 ) is the error term. The parameter estimate 𝑑 𝑖 was 
extracted as the connectivity measure from 𝑅𝑂 𝐼 𝑖 to 𝑅𝑂 𝐼 𝑗 . Parameters 
were estimated with lm in the “stat ” R package. 

2.10. Connectivity modelling with vector autoregression 

For a network of 𝑛 ROIs, the 𝑝 -th order vector autoregressive model 
VAR ( 𝑝 ) is modelled: 

𝑥 𝑖 ( 𝑡 ) = 𝑐 𝑖 + 

𝑛 ∑

𝑗=1 

𝑝 ∑

𝑘 =1 
𝛼𝑖𝑗𝑘 𝑥 𝑖 ( 𝑡 − 𝑘 ) + 𝜀 𝑖 ( 𝑡 ) 

where the endogenous variable 𝑥 𝑖 ( 𝑡 ) is the time series of region 𝑖 ; 𝑐 𝑖 is 
the intercept of 𝑥 𝑖 ( 𝑡 ) ; 𝛼𝑖𝑗𝑘 is the effect of region 𝑗 on region 𝑖 with a lag of 
𝑘 time points; and 𝜀 𝑖 ( 𝑡 ) is the residual time series at region 𝑖 . Hence, the 
first-order vector autoregressive model VAR(1) is modelled as follows: 

𝑥 𝑖 ( 𝑡 ) = 𝑐 𝑖 + 

𝑛 ∑

𝑗=1 
𝛼𝑖𝑗1 𝑥 𝑖 ( 𝑡 − 1 ) + 𝜀 𝑖 ( 𝑡 ) 

The second-order model VAR(2) is modelled as follows: 

𝑥 𝑖 ( 𝑡 ) = 𝑐 𝑖 + 

𝑛 ∑

𝑗=1 
𝛼𝑖𝑗1 𝑥 𝑖 ( 𝑡 − 1 ) + 

𝑛 ∑

𝑗=1 
𝛼𝑖𝑗2 𝑥 𝑖 ( 𝑡 − 2 ) + 𝜀 𝑖 ( 𝑡 ) 

The solution involved one 𝑛 × 𝑛 matrix for each lag. Only the matrix 
containing 𝛼𝑖𝑗2 was retained for the VAR(2). The VAR path coefficients 
were estimated with the “vars ” R package, and the implementation was 
adapted from “1dGC ” of the AFNI package. The stationarities of 70 (35 
participants x 2 sessions) time series were confirmed with KPSS and ADF 
with the “tseries ” R package, and the degree of lagging was estimated 
with Akaike criteria (AIC; ( Pfaff, 2008 ), with maximum lagging of 5 for 
the 140 models. The results suggested that VAR(1) and VAR(2) were 
both plausible orders for vector autoregression (Table S1). The order of 
lagging corresponded to the TR of the fMRI acquisition. Hence, VAR(1) 
represented a lag of 2 s, and VAR(2) represented a lag of 4 s. 

2.11. Linear mixed-model lasso for variable selection 

We established 12 models by predicting the speed indices PS and CS 
from each of the six sets of connectivity measures: Pearson’s, partial, 
semi-partial correlations, PPI, VAR(1), and VAR(2). Firstly, for each of 
the connectivity matrices, connectivity paths that survived one-sample 
t -test with p ≤ 0.05 were included in the model testing. The number of 
predictors for the model, denoted as p, was less than or equal to 78 and 
156 for the non-directed and directed connectivity measures, respec- 
tively (pairwise combinations of 13 ROIs depending on the statistical 
significance of paths ≤ 0.050). A significant speed-connectivity correla- 
tion was defined as all subjects showing consistent positive connectivity 
for the same path ( Fig. 3 C). Secondly, linear mixed-model LASSO regres- 
sion was applied for variable selection using the “glmmLasso ” R pack- 
age. In each model, the dependent variables were the 140 speed indices 
(35 subject x 4 conditions), and the fixed-effect independent variables 
were the estimated connectivity indices of each path for each condition. 
These formed a matrix with [p x 140] dimensions. The task conditions 

Table 1 

Mean reaction times and accuracy rates for the Arrow Tasks. 

Auditory Visual 

Task Mean SD Mean SD 

NEU 240 83 245 45 

Reaction Times (ms) COM 366 84 380 46 

INC 403 97 443 61 

NEU 100 0 100 0 

Accuracy Rates (%) COM 96.0 6.4 96.9 4.6 

INC 96.2 3.7 96.8 2.8 

NEU: control condition. COM: compatible condition. INC: in- 
compatible condition. 

were modelled as random intercepts. Before the model selection pro- 
cedure, all variables were first converted to standard score. The tuning 
parameter 𝜆 was iterated from 100 to 1 with a step of − 1 ( Groll and 
Tutz, 2014 ). The initial 𝜆 of each model was ascertained to suppress the 
coefficients to zero. In each iteration, the delta and q parameters from 

the previous iteration were used to initialize the LASSO fitting. The pa- 
rameter 𝜆 of the final solution was chosen according to AIC criteria to 
estimate the Fisher scoring. Variables with non-zero coefficients were 
then fitted to a linear mixed-effects model using the “lme4 ” R package. 
Confidence intervals were estimated with 5000 bootstraps, and the ef- 
fect sizes were calculated using Cohen’s 𝑓 2 ( Selya et al., 2012 ). 

2.12. Predictive models and model comparison 

In the current study, the six sets of activation and connectivity pre- 
dictors were used to predict each of the two speed indices. Twelve mod- 
els were estimated, and the performance of the models were compared 
using the AIC obtained from an ANOVA test against the corresponding 
null model. Goodness of fits of the mixed-effects models were estimated 
with the marginal R-square value from the “MuMIn ” R package. The 
marginal R-square represents only the variance explained by fixed fac- 
tors ( Nakagawa and Schielzeth, 2012 ). The code for the data analysis is 
available at https://github.com/clivehywong/2021CPS . 

3. Results 

3.1. Reaction times and accuracies 

The Condition effect on the mean RTs was significant, F(2, 
170) = 353, p < 0.001, while the Modality effect, F(1, 170) = 2.4, 
p = 0.117, and their interactions, F(2, 170) = 1.4, p = 0.241, were not 
significant ( Table 1 ). Post-hoc analysis on Condition showed that the RT 

for NEU was significantly shorter than those of COM, t(170) = 6.5, p < 

0.001, and INC, t(170) = 19.0, p < 0.001, and the RT of COM was signif- 
icantly shorter than that of INC, t(170) = 25.6, p < 0.001. For accuracy 
rate, the Condition effect, F(2, 170) = 24.7, p > 0.001, was significant, 
but the Modality effect, F(1, 170) = 1.1, p = 2.8, and their interactions, 
F(2, 170) = 0.3, p = 0.730, were not significant. Post hoc analyses on 
Condition showed that the accuracy for NEU was significantly higher 
than those of COM, t(170) = 6.1, p < 0.001, and INC, t(170) = 6.0, p < 

0.001, and the difference between the accuracies of COM and INC was 
not significant, t(170) = 0.055, p = 0.998. 

3.2. Regions of interest 

Thirteen ROIs were selected ( Fig. 2 B, Table 2 , available at https:// 
github.com/clivehywong/2021CPS ), including frontal (bilateral medial 
frontal cortex, bilateral frontal eye field, and bilateral inferior frontal 
junction), parietal (bilateral intraparietal sulcus), subcortical (bilateral 
thalamus), and cerebellum (bilateral lobule 6 and vermis 6). The number 
of voxels ranged from 148 to 155. 

https://github.com/clivehywong/2021CPS
https://github.com/clivehywong/2021CPS
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Fig. 3. Model estimation procedure. A) Estimated connectivity matrices for each condition for each subject. Each element in the matrices is subjected to a one-sample 
t -test, and statistically significant paths are selected ( p < 0.05). LASSO regressions are conducted for feature selection, and selected paths are then fitted to a linear 
mixed model. Direction of connectivity and slope of speed-connectivity regression are combined. B) Illustration of negative and positive connectivity. C) Illustration 
of regression lines that combine direction of connectivity with slope of speed-connectivity correlates. Light and dark gray lines represent connectivities that have 
inconsistent positive or negative connectivity and are therefore excluded from the significant model. 

Table 2 

Details of the region of interests. 

Label Substrate vox Vol MNI coordinate (X, Y, Z) 

LMFC Left Medial Frontal Cortex 155 1240 − 5.8 8.3 51.1 

LFEF Left Frontal Eye-Field 150 1200 − 28.8 − 4.4 51.2 

LIFJ Left Inferior Frontal Junction 153 1224 − 44.8 2.7 34.2 

LIPS Left Intraparietal Sulcus 155 1240 − 30.8 − 50.5 45.0 

LTHAL Left Thalamus 153 1224 − 11.6 − 19.6 9.2 

LCH6 Left Cerebellum Lobule 6 154 1232 − 30.5 − 59.7 − 25.5 

MCV6 Cerebellum Vermis 6 153 1224 2.0 − 68.6 − 20.1 

RCH6 Right Cerebellum Lobule 6 150 1200 24.5 − 53.0 − 22.1 

RTHAL Right Thalamus 153 1224 11.9 − 17.1 10.5 

RIPS Right Intraparietal Sulcus 154 1232 31.5 − 49.5 45.0 

RIFJ Right Inferior Frontal Junction 150 1200 45.0 6.7 32.7 

RFEF Right Frontal Eye-Field 148 1184 35.4 − 2.5 50.3 

RMFC Right Medial Frontal Cortex 155 1240 5.2 13.1 49.4 

Note: vox: number of voxel in the cluster. Vol: volume of the cluster, in mm 

3 . 

3.3. Model comparison 

The accuracy metrics of the best models selected by LASSO for 
each set of connectivity predictors are listed in Table 3 . All models 
are significantly better than the corresponding null models, as indi- 
cated by the AIC of the ANOVA tests. The model built with VAR(1) 
attained the lowest AIC for PS (AIC = 368.0, 𝑅 

2 = 0.212) and CS 
(AIC = 365.1, 𝑅 

2 = 0.374). Because the AIC for different dependent vari- 
ables are not directly comparable, we cannot compare the best models 
of PS and CS with it. The marginal 𝑅 

2 values indicated that the CS ~

VAR(1) model attained the highest explained variance among all the 
models. 

3.4. Selected model: predicting cognitive speed with first-order vector 

autoregression 

The selected model predicted CS from interregional interaction mod- 
elled with first-order vector autoregression: 𝜒2 (21) = 73.2, p < 0.001, 
and 𝑅 

2 = 0.374. The final model involved 21 predictors, six of which 
were significant ( Table 4 and Fig. 3 ). The paths that predicted faster 
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Table 3 

Comparison of accuracy metrics of LASSO-selected models built with different fMRI-derived activa- 
tion/connectivity variables. 

Chi-Square Test 

Connectivity measure Abbv Df AIC R 2 𝜒2 Df p -log(p) 

Processing Speed 

Null Model 3 392.6 

BOLD PS~BOLD 7 377.9 0.137 22.6 4 0.00015 3.83 ∗ ∗ ∗ 

gPPI PS~gPPI 8 373.7 0.160 28.8 5 2.51E-05 4.6 ∗ ∗ ∗ 

Pearson Correlation PS~Pearson 18 376.1 0.225 46.5 15 4.46E-05 4.35 ∗ ∗ ∗ 

Partial Correlation PS~Partial 11 375.4 0.183 33.1 8 5.80E-05 4.24 ∗ ∗ ∗ 

Semi-partial Correlation PS~Semi-Partial 10 374.4 0.176 32.1 7 3.86E-05 4.41 ∗ ∗ ∗ 

VAR(1) PS~VAR(1) 11 368.0 0.212 40.5 8 2.54E-06 5.60 ∗ ∗ ∗ 

VAR(2) PS~VAR(2) 9 384.3 0.114 20.3 6 0.00245 2.61 ∗ ∗ 

Cognitive Speed 

Null Model 3 402.3 

BOLD CS~BOLD 7 397.0 0.088 13.3 4 0.00977 2.01 ∗ ∗ 

gPPI CS~gPPI 12 386.3 0.205 34.0 9 8.89E-05 4.05 ∗ ∗ ∗ 

Pearson Correlation CS~Pearson 12 394.8 0.157 25.5 9 0.00248 2.61 ∗ ∗ 

Partial Correlation CS~Partial 8 386.3 0.165 26.0 5 8.88E-05 4.05 ∗ ∗ ∗ 

Semi-partial Correlation CS~Semi-Partial 8 383.8 0.179 28.5 5 2.91E-05 4.54 ∗ ∗ ∗ 

VAR(1) CS~VAR(1) 21 365.1 0.374 73.2 18 1.31E-08 7.88 ∗ ∗ ∗ 

VAR(2) CS~VAR(2) 4 395.9 0.058 8.4 1 0.00369 2.43 ∗ ∗ 

Note: The models were abbreviated with the notation dependent variable ~ independent variable set . PS: Pro- 
cessing speed index. CS: Cognitive speed index. BOLD: brain activations. gPPI: generalized psychophysio- 
logical interaction network estimates. Pearson: Pearson correlation network estimates. 

Table 4 

LASSO-selected variables of the model predicting speed with effective connectivities esti- 
mated with first-order vector autoregressions. 

Predictors Cohen’s ƒ2 Conn 𝛽 SE 95% CI p 

RMFC →LIPS 0.232 − 0.049 0.301 0.110 [0.086, 0.517] 0.007 ∗ ∗ 

RMFC →MCV6 0.222 − 0.047 − 0.330 0.125 [ − 0.585, − 0.080] 0.010 ∗ ∗ 

LIFJ →RCH6 0.202 0.051 0.218 0.091 [0.043, 0.395] 0.017 ∗ 

MCV6 →RCH6 0.196 0.169 − 0.193 0.082 [ − 0.362, − 0.030] 0.021 ∗ 

LCH6 →LTHAL 0.182 − 0.094 0.226 0.104 [0.019, 0.432] 0.031 ∗ 

LCH6 →LFEF 0.176 − 0.148 0.241 0.114 [0.016, 0.461] 0.036 ∗ 

Note: Only significant paths are shown in the table. Conn: the mean of the connectivity 
estimates, positive value represents positive interregional interaction and vice versa; 𝜷: the 
parameter estimates of the regression model; se: standard error; 95%CI: 95% confidence 
interval. Also see Fig. 4 . 

Higher positive connectivity
Higher negative connectivity
Lower positive connectivity
Lower negative connectivity

Predictors for faster CS

Fig. 4. The connectivity predictors of the best models for CS using VAR(1) pre- 
dictors. Only significant connections are plotted on the figure. 

CS were higher negative RMFC →LIPS (Cohen’s ƒ2 = 0.232, Mean Con- 
nectivity = − 0.049, 𝛽 = 0.301, 95% CI: [0.086, 0.517], and p = 0.07), 
lower negative RMFC →MCV6 (Cohen’s ƒ2 = 0.222, Mean Connectiv- 
ity = − 0.047, 𝛽 = − 0.33, and p = 0.01), higher positive LIFJ →RCH6 
(Cohen’s ƒ2 = 0.202, Mean Connectivity = 0.051, 𝛽 = 0.218, 95% 

CI: [0.043, 0.395], and p = 0.017), lower positive MCV6 →RCH6 (Co- 

hen’s ƒ2 = 0.196, Mean Connectivity = 0.169, 𝛽 = − 0.193, 95% CI: 
[ − 0.362, − 0.03], and p = 0.021), higher negative LCH6 →LTHAL (Co- 
hen’s ƒ2 = 0.182, Mean Connectivity = − 0.094, 𝛽 = 0.226, 95% CI: 
[0.019, 0.432], and p = 0.031), and higher negative LCH6 →LFEF (Co- 
hen’s ƒ2 = 0.176, Mean Connectivity = − 0.148, 𝛽 = 0.241, 95% CI: 
[0.016, 0.461], and p = 0.036). Among the six interregional connec- 
tivity paths, three originated from the frontal region and three from the 
cerebellum. 

4. Discussion 

In this study, interregional interactions associated with PS were eval- 
uated by predicting cognitive processing speed with two sets of speed 
indices and six sets of connectivity indices. The results indicated that the 
first-order vector autoregression model VAR(1) was a better model than 
the Pearson’s, partial semi-partial correlations, psychophysiological in- 
teraction, or second-order VAR models. The most significant finding 
was, among the predefined task-positive network involving frontal, pari- 
etal and subcortical regions, a predominant cerebello-frontal network 
found to be associated with cognitive processing speed. The neural net- 
work was composed of six speed-related effective paths. Among them, 
three long-range functional connectivities between the frontal cortex 
and cerebellum were LIFJ →RCH6, RMFC →MCV6, and LCH6 →LFEF. 
There were also three short-range connectivities, with two involving 
the cerebellum (i.e., MCV6 →RCH6 and LCH6 →LTHAL) and one involv- 
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ing the cortex (i.e., RMFC →LIPS). It is noteworthy that stronger pre- 
dictions of the speed come from the frontal- rather than the cerebellar- 
originated connectivities. Higher positive connectivity of the LIFJ with 
the RCH6, lower negative connectivity of the RMFC with the MCV6, 
and higher negative connectivity of the RMFC with the LIPS resulted in 
faster speeds. These were compared with higher negative connectivity 
of the LCH6 with the LTHAL and LFEF and with lower positive connec- 
tivity of the MCV6 with the RCH6, which resulted in faster speed. The 
results suggest CS may involve interactions between effortful and auto- 
matic information processing subserved by the RMFC and LFEF (frontal 
drivers) and the LCH6 and RCH6 (cerebellar drivers), respectively. 

4.1. Cognitive speed definition 

This study was targeted at reducing the influence due to task speci- 
ficity and isolating the portion of the time accounting for the speed of 
the cognitive processes. The “two-modality by three-task rule ” would 
have reduced the task specificity; and the cognitive speed index derived 
would have partialled out the RTs of the control conditions from those 
of the experimental conditions ( Kansal et al., 2017 ). The results demon- 
strate that the VAR(1) model was more useful for predicting the CS than 
for predicting the PS (see Table 3 ). 

4.2. Connectivity networks 

The yielded significant ROIs were found to overlap with the neu- 
ral substrates commonly associated with the DAN ( Corbetta and Shul- 
man, 2002 ; i.e., RFEF, LFEF, LIFJ, RIFJ, LIPS, RIPS, LTHAL, and RTHAL) 
and CON (Cinguloopercular Network, Dosenbach et al., 2006 ; i.e., 
RMFC, LMFC, RCH6, MCV6, and LCH6). The connectivities revealed 
among the predefined task-positive ROIs suggest a plausible cerebello- 
frontal network within a predefined set of regions association with the 
CS. Interpretations of the effective connectivities revealed in this paper 
are based on two dimensions —uni- versus bidirectional —and the rela- 
tionships of functional and anatomical connections reported in previous 
studies. For directions of causative connectivity, due to the complexity 
involved in reciprocal causation, this study only included task-positive 
nodes. This eliminated connectivity pairs that might have manifested 
as reciprocal causation in nature, keeping those that would have been 
unidirectional in nature. The lack of possible reciprocal or circular con- 
nectivities is a limitation of this study. The plausible neural processes 
underlying the identified effective connectivities is elaborated below. 

The strongest effective connectivity predictors were the 
RMFC →LIPS, RMFC →MCV6, and LIFJ →RCH6. The latter two functional 
pairs were long-range, from frontal cortex to cerebellum. The other 
two functional pairs were short-range, which cluster in the cerebellum 

(i.e., MCV6 →RCH6 and LCH6 →LTHAL). The functional association 
of the cerebello-frontal network with CS is a new finding. Previous 
studies reported that effective connectivities of the cerebello-frontal 
network were related to a wide range of cognitive processing, such 
as visual ( Kellermann et al., 2012 ) and auditory ( Salmi et al., 2009 ) 
attention, perceptual timing prediction ( O’Reilly, Mesulam, and Nobre, 
2008 ), working memory ( Luis et al., 2015 ), and executive function 
( Reineberg and Banich, 2016 ). Specific to PS, Eckert et al. (2010) re- 
ported structural speed–brain correlates in the cerebellar and frontal 
regions. Using source-based morphology on structural imaging data, 
seven structural components in the cerebellum and the frontal cortex as- 
sociated with age-related changes in PS were identified. The findings of 
this study are consistent with those revealed by Eckert et al. (2010) and 
offer further evidence suggesting plausible cerebellar-frontal functional 
interactions for mediating PS. 

The results suggest that the RMFC plays a significant role in facili- 
tating CS, as it was part of two connectivity pairs: RMFC →MCV6 and 
RMFC →LIPS. In the RMFC →MCV6, lower negative connectivity of the 
RMFC with the MCV6 (or cerebellum vermis VI) predicted faster CS. 
This finding is somewhat consistent with previous studies, in which PS 

was associated separately with activations in the MFC ( Forn et al., 2013 ) 
and vermis ( Ruet et al., 2014 ; Silva et al., 2019 ) and with the cerebellar 
and frontal regions ( Eckert, 2011 ; Paul et al., 2009 ). Nevertheless, the 
concurrent involvements of MFC and various cerebellar regions have 
also been reported in other intrinsic connectivity ( Buckner et al., 2011 ; 
Habas et al., 2009 ), task connectivity ( Forn et al., 2013 ), and meta- 
analytic ( Bernard and Seidler, 2013 ) studies. Functionally, the RMFC 

was associated with proactive control ( Clark et al., 2020 ; Hu et al., 
2016 ) and inhibited competing task sets ( Mayr et al., 2006 ), whereas 
the MCV6 was associated with vigilance attention ( Langner and Eick- 
hoff, 2013 ) and working memory speed (H. Ding et al., 2012 ). Exci- 
tatory stimulation of the medial cerebellum was found to increase at- 
tention performance ( Esterman et al., 2017 ), and inhibitory stimulation 
hampered the automaticity of cognitive processes ( Argyropoulos et al., 
2011 ). The MFC ( Korb et al., 2017 ; la Vega, Chang, Banich, Wager, 
and Yarkoni, 2016 ) and the posterior cerebellum ( D’Mello et al., 2020 ) 
were found to associate with action- and motor-oriented cognitive con- 
trol ( Langner and Eickhoff, 2013 ). Taken together, the lower negative 
influence from the RMFC to the MCV6 (i.e. RMFC →MCV6) for faster 
CS may be due to the lowering of regulation from the frontal region, 
which could have facilitated the automaticity attention processes sub- 
served by the cerebellum ( Ramnani, 2014 ; Shine and Shine, 2014 ). In 
this study, higher negative influence from the RMFC to the LIPS (i.e. 
RMFC →LIPS) also predicted faster CS. This result is contrary to that of 
another study that reported faster PS associated with higher coactiva- 
tion between the two regions ( Forn et al., 2013 ). Effective MFC to LIPS 
connectivity was found to modulate cognitive control ( Harding et al., 
2015 ), while LIPS alone was involved in higher order goal-related action 
control ( Tunik et al., 2007 ). The higher negative connectivity of RMFC 

with LIPS suggests that a faster CS would have involved increased sup- 
pression of irrelevant action-rule representations, such as the compatible 
rules ( “UP ” button when an upward arrow appeared) when performing 
the incompatible conditions in this study. 

The involvement of the LCH6 and RCH6 in CS is an interesting and 
important finding. The LCH6 was found to form higher negative connec- 
tivities with the LFEF and LTHAL, which contributed to faster CS. The 
results are consistent with those reported in one study that activations 
of the LCH6 and LTHAL were associated with PS ( Genova et al., 2009 ). 
Cerebellar-thalamic connectivity was associated with visuomotor con- 
trol ( Lin et al., 2009 ) and formation of motor memory ( Mawase et al., 
2017 ). The LCH6 was frequently associated with spatial processing, 
working memory, and low cognitive demand tasks with overt move- 
ments ( Stoodley et al., 2012 ). A recent review on the functions of 
thalamus suggest its role is beyond the relay of cortico-cortical infor- 
mation ( Guillery and Sherman, 2002 ) but participates in sensorimo- 
tor integration ( Murray et al., 2012 ). Previous studies on PS also re- 
ported thalamus involvement among older adults ( Waiter et al., 2008 ) 
and patients with multiple sclerosis ( Bisecco et al., 2017 ). The associ- 
ation between the higher negative connectivity of the LCH6 with the 
LTHAL (i.e. LCH6 →LTHAL) suggests that a faster speed might have re- 
quired inhibition of the thalamus for participating in the task-taking 
processes ( Prevosto and Sommer, 2013 ). This proposition is inconsis- 
tent with the task employed in this study, requiring a low level of at- 
tention and simple task sets for producing overt motor responses. The 
FEF has been functionally associated with top–down reorientation of 
attention ( Shulman et al., 2009 ) and encoding of multimodal stimuli 
( Spagna et al., 2015 ; Tamber-Rosenau et al., 2013 ), such as visual and 
auditory stimuli ( Tark and Curtis, 2009 ). The higher negative connec- 
tivity findings of the LCH6 with LTHAL and LFEF suggest that faster CS 
might have involved inhibition of the frontal cortical activities for keep- 
ing pace with the cognitive demands, as required by the multimodal 
attentional task of this study. Our findings contextualize the possible 
inhibitory role played by the cerebellum on the frontal and subcortical 
neural substrates for fostering faster CS. 

Different from the LCH6, the RCH6 was the recipient of positive 
connectivity from the LIFJ and MCV6. It suggests that involvements 
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of RCH6 may be facilitated, rather than inhibited, by the activations 
of the frontal cortex and cerebellum. A recent meta-analytic study re- 
ported that the LIFJ was associated with reactive control ( Clark et al., 
2020 ), while the RCH6 was associated with working memory speed 
( Salmi et al., 2010 ). The IFJ and RCH6 were related to maintaining 
( Woolgar et al., 2011 ) and implementing ( Balsters and Ramnani, 2011 ) 
stimulus–response task rules. The higher positive connectivity of the 
LIFJ with the RCH6 (i.e. LIFJ →RCH6) suggests that frontal activations 
would have facilitated faster task-rule responses subserved by the RCH6. 
The results of the present study do not support three proposed cerebellar 
connectivities: LIFJ →RCH6, RCH6 →LFEF, and LCH6 →LTHAL. Plausible 
reciprocal cortico-cerebello-cortical connectivity of the LIFJ →RCH6 and 
RCH6 →LFEF influencing CS warrants future investigation. The signifi- 
cant finding of the short-range MCV6 →RCH6 connectivity is less clear. 
The lower positive connectivity of the MCV6, which plays a major role in 
the automaticity process, with the RCH6 suggests that both of the cere- 
bellar structures might complement one another in facilitating faster CS. 

4.3. Negative causal influence in task-positive network 

The few negative connectivities revealed in the interregional pairs 
of neural substrates, such as RMFC →LIPS and RMFC →RCV6, are some- 
what counterintuitive under the context of a task-positive network. The 
main concern would be that temporal correlations of the neural sub- 
strates within a task-positive network should consistently be in positive 
values ( Fox et al., 2005 ). Negative causal connectivity refers to a former 
neural substrate exerting negative influence on a latter neural substrate 
( Chen et al., 2011 ). When engaging in a task, better performance, such 
as shorter RTs, can be due to increases in effort or improvements in effi- 
ciency on task ( Lin et al., 2011 ). It is noteworthy that increase in effort 
can be a consequence of stronger facilitative or inhibitory effects to be 
exerted from a former neural substrate functionally connecting to a lat- 
ter neural substrate. For instance, our results showed higher negative 
connectivity of RMFC →LIPS predicted faster performance. Increases in 
BOLD signals of RMFC would have intensified the inhibitory effect on 
LIPS for producing shorter RTs. It is plausible that negative connectivi- 
ties in a task-positive network should not be understood as suppression 
of task-relevant processes subserved by the network. It could be that 
the inhibitory effects of RMFC existed in the connective pairs, whereby 
playing a supervisory role accounted for the negative connectivity val- 
ues. On the other hand, it could have been the increase in BOLD signals 
in the LIPS in response to the inhibition accounted for the positive values 
in the task-positive network. The explanations offered on the negative 
connectivities found in a task-positive network in this section need to 
be further verified in future study. 

4.4. Limitations 

This study has several limitations. First, there are ongoing debates 
on the application of Granger causality on fMRI (e.g., Barnett et al., 
2018 ). One issue is the discrepancies in temporal resolutions of fMRI 
(i.e., 2 s) and those of neuronal activities (in sub-milliseconds). The 
shapes of hemodynamic responses also vary across different brain re- 
gions. Nevertheless, a previous study concluded that Granger causality 
analysis was found to adequately detect the causal influence ( Seth et al., 
2013 ), as the BOLD responses would have functioned as a low-pass filter, 
mitigating the low sampling frequency issue ( Wen et al., 2013 ). When 
applied to effective connectivity analysis, other issues, such as vascu- 
lar anatomy ( Webb et al., 2013 ) and an over-parameterized model and 
interpretation of a signed path ( Zhang et al., 2016 ), could have con- 
founded the results. In particular, Webb et al. (2013) suggested that 
the blood flow in major cerebral arteries could introduce systematic 
BOLD signal latency across brain regions, leading to spurious “Granger- 
source ” and “Granger-sink ” brain regions. However, because the VAR 

model constructed in this study incorporated multiple ROIs, which also 
carried the vascular signals, the effect could have been mitigated, as the 

systematic BOLD latency could have been regressed out. Future stud- 
ies should be conducted to justify our speculation. The current study 
revealed that the data-driven multivariate lagged model was superior 
to zero-lag correlation-based connectivity estimators in predicting PSs. 
Future studies should be conducted to test the replicability of the re- 
sults and the application of the Granger-like path estimator to other con- 
structs. Second, the task-negative network was not included in the cur- 
rent study because of the limited number of ROIs entered into the model 
to avoid overfitting of the multivariate connectivity estimation models. 
Previous studies demonstrated that the default-mode network was as- 
sociated with slowed attentional RT ( Weissman et al., 2006 ). Further 
study would extend the coverage of additional functional networks for 
building the PS model. Third, the two-modality and three-task rule de- 
sign somewhat limited the option of establishing external validity of the 
results with those derived from public datasets. Future studies should 
employ different tasks but a similar design to test the reproducibility 
of the results. Fourth, the sample size was rather small, which could 
have weakened the power of the analyses. Readers should be cautious 
when interpreting the results. Finally, the CS was derived by regressing 
out the RTs of control conditions from those of experimental conditions. 
The former could have included the sensorimotor and decision-making 
components ( Ratcliff and Van Dongen, 2011 ). Although the decisions 
made in the control conditions were relatively simple, it is not known 
how much the time involved would have impacted the CS. Future re- 
search could validate the merit of the partial method. 

5. Conclusion 

The findings of this study indicate that facilitative and inhibitory 
processes, which were shown to be subserved by a cerebello-frontal net- 
work, within a predefined set of regions, influenced cognitive processing 
speed. The effective connectivity analysis suggested that the RMFC and 
LCH6 were the core substrates that regulated the information process 
through task-set maintenance, and the LIFJ, LIPS and RCH6 were in- 
volved in the stream of stimulus-response information processing. The 
new findings on the antagonistic and agonistic roles among the cerebel- 
lar regions in cognitive processing speed require further investigation. 
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