267 research outputs found

    International Space Station Alpha trace contaminant control subassembly life test report

    Get PDF
    The Environmental Control and Life Support System (ECLSS) Life Test Program (ELTP) began with Trace Contaminant Control Subassembly (TCCS) Life Testing on November 9, 1992, at 0745. The purpose of the test, as stated in the NASA document 'Requirements for Trace Contaminant Control Subassembly High Temperature Catalytic Oxidizer Life Testing (Revision A)' was to 'provide for the long duration operation of the ECLSS TCCS HTCO (High Temperature Catalytic Oxidizer) at normal operating conditions... (and thus)... to determine the useful life of ECLSS hardware for use on long duration manned space missions.' Specifically, the test was designed to demonstrate thermal stability of the HTCO catalyst. The report details TCCS stability throughout the test. Graphs are included to aid in evaluating trends and subsystem anomalies. The report summarizes activities through the final day of testing, January 17, 1995 (test day 762)

    Analytical control test plan and microbiological methods for the water recovery test

    Get PDF
    Qualitative and quantitative laboratory results are important to the decision-making process. In some cases, they may represent the only basis for deciding between two or more given options or processes. Therefore, it is essential that handling of laboratory samples and analytical operations employed are performed at a deliberate level of conscientious effort. Reporting erroneous results can lead to faulty interpretations and result in misinformed decisions. This document provides analytical control specifications which will govern future test procedures related to all Water Recovery Test (WRT) Phase 3 activities to be conducted at the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC). This document addresses the process which will be used to verify analytical data generated throughout the test period, and to identify responsibilities of key personnel and participating laboratories, the chains of communication to be followed, and ensure that approved methodology and procedures are used during WRT activities. This document does not outline specifics, but provides a minimum guideline by which sampling protocols, analysis methodologies, test site operations, and laboratory operations should be developed

    Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    Get PDF
    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed

    Permanent current from non-commutative spin algebra

    Full text link
    We show that a spontaneous electric current is induced in a nano-scale conducting ring just by putting three ferromagnets. The current is a direct consequence of the non-commutativity of the spin algebra, and is proportional to the non-coplanarity (chirality) of the magnetization vectors. The spontaneous current gives a natural explanation to the chirality-driven anomalous Hall effect.Comment: 7 pages, 4 figures on separate pag

    Microscopic Calculation of Spin Torques in Disordered Ferromagnets

    Full text link
    Effects of conduction electrons on magnetization dynamics, represented by spin torques, are calculated microscopically in the first order in spatial gradient and time derivative of magnetization. Special attention is paid to the so-called β\beta-term and the Gilbert damping, α\alpha, in the presence of electrons' spin-relaxation processes, which are modeled by quenched magnetic (and spin-orbit) impurities. The obtained results such as αβ\alpha \ne \beta hold for localized as well as itinerant ferromagnetism.Comment: 4 page

    Anomalous Hall Effect and Skyrmion Number in Real- and Momentum-space

    Full text link
    We study the anomalous Hall effect (AHE) for the double exchange model with the exchange coupling JH|J_H| being smaller than the bandwidth t|t| for the purpose of clarifying the following unresolved and confusing issues: (i) the effect of the underlying lattice structure, (ii) the relation between AHE and the skyrmion number, (iii) the duality between real and momentum spaces, and (iv) the role of the disorder scatterings; which is more essential, σH\sigma_H (Hall conductivity) or ρH\rho_H (Hall resistivity)? Starting from a generic expression for σH\sigma_H, we resolve all these issues and classify the regimes in the parameter space of JHτJ_H \tau (τ\tau: elastic-scattering time), and λs\lambda_{s} (length scale of spin texture). There are two distinct mechanisms of AHE; one is characterized by the real-space skyrmion-number, and the other by momentum-space skyrmion-density at the Fermi level, which work in different regimes of the parameter space.Comment: 4 pages, 1 figure, REVTe

    Ballistic and diffuse transport through a ferromagnetic domain wall

    Full text link
    We study transport through ballistic and diffuse ferromagnetic domain walls in a two-band Stoner model with a rotating magnetization direction. For a ballistic domain wall, the change in the conductance due to the domain wall scattering is obtained from an adiabatic approximation valid when the length of the domain wall is much longer than the Fermi wavelength. In diffuse systems, the change in the resistivity is calculated using a diagrammatic technique to the lowest order in the domain wall scattering and taking into account spin-dependent scattering lifetimes and screening of the domain wall potential.Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Final state interaction effects in mu-capture induced two-body decay of 3He

    Get PDF
    The mu-capture process on 3He leading to a neutron, a deuteron and a mu-neutrino in the final state is studied. Three-nucleon Faddeev wave functions for the initial 3He bound and the final neutron-deuteron scattering states are calculated using the BonnB and Paris nucleon-nucleon potentials. The nuclear weak current operator is restricted to impulse approximation. Large effects on the decay rates of the final state interaction are found. The comparison to recent experimental data shows that the inclusion of final state interactions drastically improves the description of the data.Comment: 14 pages, 6 eps figure

    Electrons in a ferromagnetic metal with a domain wall

    Full text link
    We present theoretical description of conduction electrons interacting with a domain wall in ferromagnetic metals. The description takes into account interaction between electrons. Within the semiclassical approximation we calculate the spin and charge distributions, particularly their modification by the domain wall. In the same approximation we calculate local transport characteristics, including relaxation times and charge and spin conductivities. It is shown that these parameters are significantly modified near the wall and this modification depends on electron-electron interaction.Comment: 10 pages with 4 figure

    Negative Domain Wall Contribution to the Resistivity of Microfabricated Fe Wires

    Full text link
    The effect of domain walls on electron transport has been investigated in microfabricated Fe wires (0.65 to 20 μm\mu m linewidths) with controlled stripe domains. Magnetoresistance (MR) measurements as a function of domain wall density, temperature and the angle of the applied field are used to determine the low field MR contributions due to conventional sources in ferromagnetic materials and that due to the erasure of domain walls. A negative domain wall contribution to the resistivity is found. This result is discussed in light of a recent theoretical study of the effect of domain walls on quantum transport.Comment: 7 pages, 4 postscript figures and 1 jpg image (Fig. 1
    corecore