267 research outputs found
International Space Station Alpha trace contaminant control subassembly life test report
The Environmental Control and Life Support System (ECLSS) Life Test Program (ELTP) began with Trace Contaminant Control Subassembly (TCCS) Life Testing on November 9, 1992, at 0745. The purpose of the test, as stated in the NASA document 'Requirements for Trace Contaminant Control Subassembly High Temperature Catalytic Oxidizer Life Testing (Revision A)' was to 'provide for the long duration operation of the ECLSS TCCS HTCO (High Temperature Catalytic Oxidizer) at normal operating conditions... (and thus)... to determine the useful life of ECLSS hardware for use on long duration manned space missions.' Specifically, the test was designed to demonstrate thermal stability of the HTCO catalyst. The report details TCCS stability throughout the test. Graphs are included to aid in evaluating trends and subsystem anomalies. The report summarizes activities through the final day of testing, January 17, 1995 (test day 762)
Analytical control test plan and microbiological methods for the water recovery test
Qualitative and quantitative laboratory results are important to the decision-making process. In some cases, they may represent the only basis for deciding between two or more given options or processes. Therefore, it is essential that handling of laboratory samples and analytical operations employed are performed at a deliberate level of conscientious effort. Reporting erroneous results can lead to faulty interpretations and result in misinformed decisions. This document provides analytical control specifications which will govern future test procedures related to all Water Recovery Test (WRT) Phase 3 activities to be conducted at the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC). This document addresses the process which will be used to verify analytical data generated throughout the test period, and to identify responsibilities of key personnel and participating laboratories, the chains of communication to be followed, and ensure that approved methodology and procedures are used during WRT activities. This document does not outline specifics, but provides a minimum guideline by which sampling protocols, analysis methodologies, test site operations, and laboratory operations should be developed
Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates
Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed
Permanent current from non-commutative spin algebra
We show that a spontaneous electric current is induced in a nano-scale
conducting ring just by putting three ferromagnets. The current is a direct
consequence of the non-commutativity of the spin algebra, and is proportional
to the non-coplanarity (chirality) of the magnetization vectors. The
spontaneous current gives a natural explanation to the chirality-driven
anomalous Hall effect.Comment: 7 pages, 4 figures on separate pag
Microscopic Calculation of Spin Torques in Disordered Ferromagnets
Effects of conduction electrons on magnetization dynamics, represented by
spin torques, are calculated microscopically in the first order in spatial
gradient and time derivative of magnetization. Special attention is paid to the
so-called -term and the Gilbert damping, , in the presence of
electrons' spin-relaxation processes, which are modeled by quenched magnetic
(and spin-orbit) impurities. The obtained results such as
hold for localized as well as itinerant ferromagnetism.Comment: 4 page
Anomalous Hall Effect and Skyrmion Number in Real- and Momentum-space
We study the anomalous Hall effect (AHE) for the double exchange model with
the exchange coupling being smaller than the bandwidth for the
purpose of clarifying the following unresolved and confusing issues: (i) the
effect of the underlying lattice structure, (ii) the relation between AHE and
the skyrmion number, (iii) the duality between real and momentum spaces, and
(iv) the role of the disorder scatterings; which is more essential,
(Hall conductivity) or (Hall resistivity)? Starting from a generic
expression for , we resolve all these issues and classify the regimes
in the parameter space of (: elastic-scattering time), and
(length scale of spin texture). There are two distinct mechanisms
of AHE; one is characterized by the real-space skyrmion-number, and the other
by momentum-space skyrmion-density at the Fermi level, which work in different
regimes of the parameter space.Comment: 4 pages, 1 figure, REVTe
Ballistic and diffuse transport through a ferromagnetic domain wall
We study transport through ballistic and diffuse ferromagnetic domain walls
in a two-band Stoner model with a rotating magnetization direction. For a
ballistic domain wall, the change in the conductance due to the domain wall
scattering is obtained from an adiabatic approximation valid when the length of
the domain wall is much longer than the Fermi wavelength. In diffuse systems,
the change in the resistivity is calculated using a diagrammatic technique to
the lowest order in the domain wall scattering and taking into account
spin-dependent scattering lifetimes and screening of the domain wall potential.Comment: 9 pages, 3 figures, to appear in Phys. Rev.
Final state interaction effects in mu-capture induced two-body decay of 3He
The mu-capture process on 3He leading to a neutron, a deuteron and a
mu-neutrino in the final state is studied. Three-nucleon Faddeev wave functions
for the initial 3He bound and the final neutron-deuteron scattering states are
calculated using the BonnB and Paris nucleon-nucleon potentials. The nuclear
weak current operator is restricted to impulse approximation. Large effects on
the decay rates of the final state interaction are found. The comparison to
recent experimental data shows that the inclusion of final state interactions
drastically improves the description of the data.Comment: 14 pages, 6 eps figure
Electrons in a ferromagnetic metal with a domain wall
We present theoretical description of conduction electrons interacting with a
domain wall in ferromagnetic metals. The description takes into account
interaction between electrons. Within the semiclassical approximation we
calculate the spin and charge distributions, particularly their modification by
the domain wall. In the same approximation we calculate local transport
characteristics, including relaxation times and charge and spin conductivities.
It is shown that these parameters are significantly modified near the wall and
this modification depends on electron-electron interaction.Comment: 10 pages with 4 figure
Negative Domain Wall Contribution to the Resistivity of Microfabricated Fe Wires
The effect of domain walls on electron transport has been investigated in
microfabricated Fe wires (0.65 to 20 linewidths) with controlled stripe
domains. Magnetoresistance (MR) measurements as a function of domain wall
density, temperature and the angle of the applied field are used to determine
the low field MR contributions due to conventional sources in ferromagnetic
materials and that due to the erasure of domain walls. A negative domain wall
contribution to the resistivity is found. This result is discussed in light of
a recent theoretical study of the effect of domain walls on quantum transport.Comment: 7 pages, 4 postscript figures and 1 jpg image (Fig. 1
- …