2,931 research outputs found

    Non Equilibrium Electronic Distribution in Single Electron Devices

    Full text link
    The electronic distribution in devices with sufficiently small diemnsions may not be in thermal equilibrium with their surroundings. Systems where the occupancies of electronic states are solely determined by tunneling processes are analyzed. It is shown that the effective temperature of the device may be higher, or lower, than that of its environment, depending on the applied voltage and the energy dependence of the tunneling rates. The I-V characteristics become asymmetric. Comparison with recent experiments is made

    Meta-Stable Brane Configurations of Triple Product Gauge Groups

    Full text link
    From an N=1 supersymmetric electric gauge theory with the gauge group SU(N_c) x SU(N_c') x SU(N_c'') with fundamentals for each gauge group and the bifundamentals, we apply Seiberg dual to each gauge group and obtain the N=1 supersymmetric dual magnetic gauge theories with dual matters including the additional gauge singlets. By analyzing the F-term equations of the dual magnetic superpotentials, we describe the intersecting brane configurations of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory. We apply also to the case for N=1 supersymmetric electric gauge theory with the gauge group Sp(N_c) x SO(2N_c') x Sp(N_c'') with flavors for each gauge group and the bifundamentals. Finally, we describe the meta-stable brane configurations of multiple product gauge groups.Comment: 80pp, 10 figures; shorten the draft and to appear in IJMP

    On supersymmetry breaking in string theory from gauge theory in a throat

    Get PDF
    We embed the supersymmetry breaking mechanism in N=1 SQCD of hep-th/0602239 in a smooth superstring theory using D-branes in the background R^4 \times SL(2)_{k=1}/U(1) which smoothly captures the throat region of an intersecting NS5-brane configuration. A controllable deformation of the supersymmetric branes gives rise to the mass deformation of the magnetic SQCD theory on the branes. The consequent instability on the open string worldsheet can be followed onto a stable non-supersymmetric configuration of D-branes which realize the metastable vacuum configuration in the field theory. The new brane configuration is shown to backreact onto the background such as to produce different boundary conditions for the string fields in the radial direction compared to the supersymmetric configuration. In the string theory, this is interpreted to mean that the supersymmetry breaking is explicit rather than spontaneous.Comment: 29 pages, harvmac, 8 figures; v2 typos corrected, reference adde

    Meta-Stable Brane Configurations with Seven NS5-Branes

    Full text link
    We present the intersecting brane configurations consisting of NS-branes, D4-branes(and anti D4-branes) and O6-plane, of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua in four dimensional N=1 supersymmetric SU(N_c) x SU(N_c') x SU(N_c'') gauge theory with a symmetric tensor field, a conjugate symmetric tensor field and bifundamental fields. We also describe the intersecting brane configurations of type IIA string theory corresponding to the nonsupersymmetric meta-stable vacua in the above gauge theory with an antisymmetric tensor field, a conjugate symmetric tensor field, eight fundamental flavors and bifundamentals. These brane configurations consist of NS-branes, D4-branes(and anti D4-branes), D6-branes and O6-planes.Comment: 34pp, 9 figures; Improved the draft and added some footnotes; Figure 1, footnote 7 and captions of Figures 7,8,9 added or improved and to appear in CQ

    U(n) Spectral Covers from Decomposition

    Full text link
    We construct decomposed spectral covers for bundles on elliptically fibered Calabi-Yau threefolds whose structure groups are S(U(1) x U(4)), S(U(2) x U(3)) and S(U(1) x U(1) x U(3)) in heterotic string compactifications. The decomposition requires not only the tuning of the SU(5) spectral covers but also the tuning of the complex structure moduli of the Calabi-Yau threefolds. This configuration is translated to geometric data on F-theory side. We find that the monodromy locus for two-cycles in K3 fibered Calabi-Yau fourfolds in a stable degeneration limit is globally factorized with squared factors under the decomposition conditions. This signals that the monodromy group is reduced and there is a U(1) symmetry in a low energy effective field theory. To support that, we explicitly check the reduction of a monodromy group in an appreciable region of the moduli space for an E6E_6 gauge theory with (1+2) decomposition. This may provide a systematic way for constructing F-theory models with U(1) symmetries.Comment: 41 pages, 14 figures; v2: minor improvements and a reference adde

    Gauge Theories with Tensors from Branes and Orientifolds

    Get PDF
    We present brane constructions in Type IIA string theory for N=1 supersymmetric SO and Sp gauge theories with tensor representations using an orientifold 6-plane. One limit of these set-ups corresponds to N=2 theories previously constructed by Landsteiner and Lopez, while a different limit yields N=1 SO or Sp theories with a massless tensor and no superpotential. For the Sp-type orientifold projection comparison with the field theory moduli space leads us to postulate two new rules governing the stability of configurations of D-branes intersecting the orientifold. Lifting one of our configurations to M-theory by finding the corresponding curves, we re-derive the N=1 dualities for SO and Sp groups using semi-infinite D4 branes.Comment: Discussion on duality in U(N) with a symmetric or antisymmetric flavor added to Section 4. Typos fixe

    A Global SU(5) F-theory model with Wilson line breaking

    Full text link
    We engineer compact SU(5) Grand Unified Theories in F-theory in which GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge field is flat, these models avoid the high scale threshold corrections associated with hypercharge flux. Along the way, we exemplify the `local-to-global' approach in F-theory model building and demonstrate how the Tate divisor formalism can be used to address several challenges of extending local models to global ones. These include in particular the construction of G-fluxes that extend non-inherited bundles and the engineering of U(1) symmetries. We go beyond chirality computations and determine the precise (charged) massless spectrum, finding exactly three families of quarks and leptons but excessive doublet and/or triplet pairs in the Higgs sector (depending on the example) and vector-like exotics descending from the adjoint of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector without an obvious symmetry to protect them may shed light on new solutions to the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor correction

    Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons

    Get PDF
    A precise measurement of the neutron decay β\beta-asymmetry A0A_0 has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report A0=0.11966±0.000890.00140+0.00123A_0 = -0.11966 \pm 0.00089_{-0.00140}^{+0.00123}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon gA/gV=1.275900.00445+0.00409g_A/g_V = -1.27590_{-0.00445}^{+0.00409}.Comment: 5 pages, 2 figure

    A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations

    Full text link
    We interpret reported hints of a Standard Model Higgs boson at ~ 125 GeV in terms of high-scale supersymmetry breaking with a shift symmetry in the Higgs sector. More specifically, the Higgs mass range suggested by recent LHC data extrapolates, within the (non-supersymmetric) Standard Model, to a vanishing quartic Higgs coupling at a UV scale between 10^6 and 10^18 GeV. Such a small value of lambda can be understood in terms of models with high-scale SUSY breaking if the Kahler potential possesses a shift symmetry, i.e., if it depends on H_u and H_d only in the combination (H_u+\bar{H}_d). This symmetry is known to arise rather naturally in certain heterotic compactifications. We suggest that such a structure of the Higgs Kahler potential is common in a wider class of string constructions, including intersecting D7- and D6-brane models and their extensions to F-theory or M-theory. The latest LHC data may thus be interpreted as hinting to a particular class of compactifications which possess this shift symmetry.Comment: v2: References added. v3: References added, published versio

    Rational F-Theory GUTs without exotics

    Full text link
    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.Comment: 27 Pages, 1 Figur
    corecore