40 research outputs found

    Differences in genetic population structures of Plasmodium falciparum isolates from patients along Thai-Myanmar border with severe or uncomplicated malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There have been many reports on the population genetic structures of <it>Plasmodium falciparum </it>from different endemic regions, but few studies have examined the characteristics of isolates from patients with different clinical outcomes. The population genetic structures of <it>P. falciparum </it>isolates from patients with either severe or uncomplicated malaria were examined.</p> <p>Methods</p> <p>Twelve microsatellite DNA loci from <it>P. falciparum </it>were used to assess the population genetic structures of 50 isolates (i.e., 25 isolates from patients with severe malaria and 25 from patients with uncomplicated malaria) collected in the Thai-Myanmar border area between 2002 and 2005.</p> <p>Results</p> <p>Genetic diversity and effective population sizes were greater in the uncomplicated malaria group than in the severe malaria group. Evidence of genetic bottlenecks was not observed in either group. Strong linkage disequilibrium was observed in the uncomplicated malaria group. The groups demonstrated significant genetic differentiation (<it>P </it>< 0.05), and allele frequencies for 3 of the 12 microsatellite loci differed significantly between the two groups.</p> <p>Conclusion</p> <p>These findings suggest that the genetic structure of <it>P. falciparum </it>populations in patients with severe malaria differs from that in patients with uncomplicated malaria. The microsatellite loci used in this study were presumably unrelated to antigenic features of the parasites, but, these findings suggest that some loci may influence the clinical outcome of malaria.</p

    Activation of nuclear factor kappa B in peripheral blood mononuclear cells from malaria patients

    Get PDF
    BACKGROUND: Malaria parasites and their products can activate a specific immune response by stimulating cytokine production in the host’s immune cells. Transcription nuclear factor kappa B (NF-κB) is an important regulator for the control of many pro-inflammatory genes, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF). The activation and expression of NF-κB p65 in peripheral blood mononuclear cells (PBMCs) of malaria patients were investigated and correlated with the levels of IL-10 and TNF to study the nature of NF-κB p65 and its linkage to inflammatory cytokines. METHODS: The sample group comprised 33 patients admitted with malaria caused by Plasmodium vivax (n = 11), uncomplicated Plasmodium falciparum (n = 11), and complicated Plasmodium falciparum (n = 11). Peripheral blood was collected at admission and on day 7 for PBMC isolation. Healthy subjects were used as a control group. The expressions of NF-κB p65 in the PBMCs from malaria patients and the plasma levels of IL-10 and TNF were measured by using enzyme-linked immunosorbent assay (ELISA). The immunofluorescence technique was used to determine NF-κB nuclear translocation. RESULTS: At admission, patients with P. vivax and uncomplicated P. falciparum had significantly elevated phospho-NF-κB p65 levels in the PBMCs compared with those of healthy controls. However, patients with complicated P. falciparum malaria had decreased levels of phospho-NF-κB p65. On day 7 post-treatment, significantly increased phospho-NF-κB p65 was found in the PBMCs of patients with complicated P. falciparum, compared with healthy controls. The plasma level of IL-10 was elevated in day 0 in patients with complicated P. falciparum malaria and was found to be negatively correlated with phospho-NF-κB p65 level (r(s) = −0.630, p = 0.038). However, there was no correlation between phospho-NF-κB p65 expression and TNF level in patients with complicated P. falciparum malaria. CONCLUSIONS: This is the first report demonstrating alterations in NF-κB p65 activity in the PBMCs of malaria patients. The altered lower features of NF-κB p65 in the PBMCs of patients with complicated P. falciparum at admission could be due to a suppressive effect of high IL-10 associated with complicated P. falciparum malaria

    Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe and cerebral malaria are associated with endothelial activation. Angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2) are major regulators of endothelial activation and integrity. The aim of this study was to investigate the clinical utility of whole blood angiopoietin (ANG) levels as biomarkers of disease severity in <it>Plasmodium falciparum </it>malaria.</p> <p>Methods</p> <p>The utility of whole blood ANG levels was examined in Thai patients to distinguish cerebral (CM; n = 87) and severe (non-cerebral) malaria (SM; n = 36) from uncomplicated malaria (UM; n = 70). Comparative statistics are reported using a non-parametric univariate analysis (Kruskal-Wallis test or Chi-squared test, as appropriate). Multivariate binary logistic regression was used to examine differences in whole blood protein levels between groups (UM, SM, CM), adjusting for differences due to ethnicity, age, parasitaemia and sex. Receiver operating characteristic curve analysis was used to assess the diagnostic accuracy of the ANGs in their ability to distinguish between UM, SM and CM. Cumulative organ injury scores were obtained for patients with severe disease based on the presence of acute renal failure, jaundice, severe anaemia, circulatory collapse or coma.</p> <p>Results</p> <p>ANG-1 and ANG-2 were readily detectable in whole blood. Compared to UM there were significant decreases in ANG-1 (p < 0.001) and significant increases in ANG-2 (p < 0.001) levels and the ratio of ANG-2: ANG-1 (p < 0.001) observed in patients with SM and CM. This effect was independent of covariates (ethnicity, age, parasitaemia, sex). Further, there was a significant decrease in ANG-1 levels in patients with SM (non-cerebral) versus CM (p < 0.001). In participants with severe disease, ANG-2, but not ANG-1, levels correlated with cumulative organ injury scores; however, ANG-1 correlated with the presence of renal dysfunction and coma. Receiver operating characteristic curve analysis demonstrated that the level of ANG-1, the level of ANG-2 or the ratio of ANG-2: ANG-1 discriminated between individuals with UM and SM (area under the curve, p-value: ANG-2, 0.763, p < 0.001; ANG-1, 0.884, p < 0.001; Ratio, 0.857, p < 0.001) or UM and CM (area under the curve, p-value: ANG-2, 0.772, p < 0.001; ANG-1, 0.778, p < 0.001; Ratio, 0.820, p < 0.001).</p> <p>Conclusions</p> <p>These results suggest that whole blood ANG-1/2 levels are promising clinically informative biomarkers of disease severity in malarial syndromes.</p

    Efficacy of DB289 in Thai Patients with Plasmodium vivax or Acute, Uncomplicated Plasmodium falciparum Infections

    Get PDF
    BackgroundDB289 is the orally active prodrug of the diamidine DB75, which was developed for the treatment of human African trypanosomiasis MethodsWe tested the safety and efficacy of DB289 for the treatment of Plasmodium vivax and acute, uncomplicated P. falciparum infections in an open-label pilot study at the Hospital for Tropical Diseases in Bangkok. Nine patients with P. vivax infections and 23 patients with P. falciparum infections were admitted and treated with 100 mg of DB289 given orally twice a day for 5 days and were followed for 28 days. Patients with P. vivax infections were also treated with primaquine on days 10-23 ResultsAll patients cleared parasites by day 7, with a mean±SD clearance time of 43±41 h. One patient with a P. vivax infection had a recurrence of parasitemia on day 9. Of the 23 patients with P. falciparum infections, 3 had recurrences of parasitemia caused by P. vivax and 2 had recurrences of parasitemia caused by P. falciparum. In only 1 of 2 recurrences of parasitemia caused by P. falciparum were the parasites genotypically distinct from the infecting parasites the patient had at enrollment, which means there was a 96% cure rate ConclusionsDB289 is a promising new antimalarial compound that could become an important component of new antimalarial combination

    Misclassification of Drug Failures in Plasmodium falciparum Clinical Trials in Southeast Asia

    Get PDF
    Most trials of antimalarials occur in areas where reinfections are possible. For Plasmodium falciparum, reinfections are distinguished from recrudescences by PCR analysis of 3 polymorphic genes. However, the validity of this approach has never been rigorously tested. We tested for misclassification in 6 patients from clinical trials in Thailand and Cambodia who were classified as reinfected by the standard PCR protocol. Using heteroduplex tracking assays and direct DNA sequencing, we found that 5 of 6 (83%) patients were misclassified. Misclassification in this manner overestimates the efficacy of antimalarials and delays recognition of decreasing therapeutic efficacy, thus delaying potential policy changes

    Serum Angiopoietin-1 and -2 Levels Discriminate Cerebral Malaria from Uncomplicated Malaria and Predict Clinical Outcome in African Children

    Get PDF
    BACKGROUND: Limited tools exist to identify which individuals infected with Plasmodium falciparum are at risk of developing serious complications such as cerebral malaria (CM). The objective of this study was to assess serum biomarkers that differentiate between CM and non-CM, with the long-term goal of developing a clinically informative prognostic test for severe malaria. METHODOLOGY/PRINCIPAL FINDINGS: Based on the hypothesis that endothelial activation and blood-brain-barrier dysfunction contribute to CM pathogenesis, we examined the endothelial regulators, angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2), in serum samples from P. falciparum-infected patients with uncomplicated malaria (UM) or CM, from two diverse populations--Thai adults and Ugandan children. Angiopoietin levels were compared to tumour necrosis factor (TNF). In both populations, ANG-1 levels were significantly decreased and ANG-2 levels were significantly increased in CM versus UM and healthy controls (p<0.001). TNF was significantly elevated in CM in the Thai adult population (p<0.001), but did not discriminate well between CM and UM in African children. Receiver operating characteristic curve analysis showed that ANG-1 and the ratio of ANG-2:ANG-1 accurately discriminated CM patients from UM in both populations. Applied as a diagnostic test, ANG-1 had a sensitivity and specificity of 100% for distinguishing CM from UM in Thai adults and 70% and 75%, respectively, for Ugandan children. Across both populations the likelihood ratio of CM given a positive test (ANG-1<15 ng/mL) was 4.1 (2.7-6.5) and the likelihood ratio of CM given a negative test was 0.29 (0.20-0.42). Moreover, low ANG-1 levels at presentation predicted subsequent mortality in children with CM (p = 0.027). CONCLUSIONS/SIGNIFICANCE: ANG-1 and the ANG-2/1 ratio are promising clinically informative biomarkers for CM. Additional studies should address their utility as prognostic biomarkers and potential therapeutic targets in severe malaria

    MINI REVIEW LONG TERM PRIMAQUINE ADMINISTRATION TO REDUCE PLASMODIUM FALCIPARUM GAMETOCYTE TRANSMISSION IN HYPOENDEMIC AREAS

    No full text
    Abstract. Artemesinin-combination therapies (ACTs) for falciparum malaria reduce gametocyte carriage, and therefore reduce transmission. Artemisinin derivatives act only against young gametocytes, but primaquine acts against mature gametocytes (which are usually present in the circulation at the time the patient presents for treatment). Both artemisnin derivatives and primaquine have short half-lives (less than 1 hour and 8 hours, respectively). Therefore, asexual parasites and young gametocytes may remain after completing ACT. Single dose of primaquine (0.5-0.75 mg base/kg) at the end of ACT can kill only mature gametocytes (if present) but cannot kill young gametocytes (if present). Remaining asexual forms and sequestered young gametocytes remaining after completion of ACT may develop into mature gametocytes 7-15 days later. Some patients have the first appearance of gametocytemia 4-8/day after completion of ACT. Thus, additional doses of primaquine (0.5-0.75 mg base/kg) given 15-18 days after or concurrently with 3 day-ACT respectively or given 15-22 days after or concurrently with 7 day-ACT respectively may be beneficial in killing the remaining mature gametocytes and thus contribute to interruption of P. falciparum gametocyte transmission more affectively than giving only a single dose of primaquine just after completing ACT

    Atypical lymphocytes in malaria mimicking dengue infection in Thailand

    No full text
    Polrat Wilairatana1, Noppadon Tangpukdee1, Sant Muangnoicharoen1, Srivicha Krudsood2, Shigeyuki Kano31Department of Clinical Tropical Medicine, 2Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 3Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, Tokyo, JapanAbstract: Patients with uncomplicated falciparum or vivax malaria usually present with acute febrile illness and thrombocytopenia similar to dengue infection. We retrospectively studied atypical lymphocytes (AL) and atypical lymphocytosis (ALO, defined as AL &amp;gt; 5% of total white blood cells) in 1310 uncomplicated malaria patients. In 718 falciparum malaria patients, AL and ALO on day 0 were found in 53.2% and 5.7% of the patients, respectively, with median AL on admission of 1% (range 0%&amp;ndash;10%), whereas in 592 vivax malaria patients, AL and ALO on day 0 were found in 55.4% and 9.5% of the patients, respectively, with median AL on admission of 1% (range 0%&amp;ndash;14%). After antimalarial treatment, AL and ALO declined in both falciparum and vivax malaria. However, AL and ALO remained in falciparum malaria on days 7, 14, and 21, whereas AL and ALO remained in vivax malaria on days 7, 14, 21, and 28. In both falciparum and vivax malaria patients, there was a positive correlation between AL and total lymphocytes, but a negative correlation between AL and highest fever on admission, white blood cells, and neutrophils, eosinophils, and platelets (P &amp;lt; 0.05). In conclusion, AL or ALO may be found in uncomplicated falciparum and vivax malaria mimicking dengue infection. In tropical countries where both dengue and malaria are endemic, presence of AL or ALO in any acute febrile patients with thrombocytopenia (similar to the findings in dengue) malaria could not be excluded. Particularly if the patients have risk of malaria infection, confirmative microscopic examination for malaria should be carried out.Keywords: malaria, dengue, atypical lymphocyte

    SCHIZONTEMIA AS AN INDICATOR OF SEVERE MALARIA

    No full text
    Abstract. We conducted this study to determine if the finding of schizontemia could be used as an indicator of severe falciparum malaria. We enrolled 250 patients with severe falciparum malaria and 250 patients with umcomplicated falciparum malaria into the study. Severe falciparum malaria was defined following World Health Organization criteria (2010). Of the 250 patients with severe falciparum malaria, 99 (39.6%) had schizontemia on admission. Of the 250 patients with uncomplicated falciparum malaria, 0 (0%) had schizontemia (p&lt;0.05). Schizontemia was also found to be significantly correlated with parasite density, severe malaria, impaired consciousness, pulmonary edema, hypoglycemia, jaundice and hemoglobinuria (p&lt;0.05). Schizontemia may be considered as an indicator of severe malaria
    corecore