370 research outputs found

    Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks

    Full text link
    This paper proposes three simple, compact yet effective representations of depth sequences, referred to respectively as Dynamic Depth Images (DDI), Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images (DDMNI). These dynamic images are constructed from a sequence of depth maps using bidirectional rank pooling to effectively capture the spatial-temporal information. Such image-based representations enable us to fine-tune the existing ConvNets models trained on image data for classification of depth sequences, without introducing large parameters to learn. Upon the proposed representations, a convolutional Neural networks (ConvNets) based method is developed for gesture recognition and evaluated on the Large-scale Isolated Gesture Recognition at the ChaLearn Looking at People (LAP) challenge 2016. The method achieved 55.57\% classification accuracy and ranked 2nd2^{nd} place in this challenge but was very close to the best performance even though we only used depth data.Comment: arXiv admin note: text overlap with arXiv:1608.0633

    A YBCO RF-squid variable temperature susceptometer and its applications

    Get PDF
    The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm

    Depth Pooling Based Large-scale 3D Action Recognition with Convolutional Neural Networks

    Get PDF
    This paper proposes three simple, compact yet effective representations of depth sequences, referred to respectively as Dynamic Depth Images (DDI), Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images (DDMNI), for both isolated and continuous action recognition. These dynamic images are constructed from a segmented sequence of depth maps using hierarchical bidirectional rank pooling to effectively capture the spatial-temporal information. Specifically, DDI exploits the dynamics of postures over time and DDNI and DDMNI exploit the 3D structural information captured by depth maps. Upon the proposed representations, a ConvNet based method is developed for action recognition. The image-based representations enable us to fine-tune the existing Convolutional Neural Network (ConvNet) models trained on image data without training a large number of parameters from scratch. The proposed method achieved the state-of-art results on three large datasets, namely, the Large-scale Continuous Gesture Recognition Dataset (means Jaccard index 0.4109), the Large-scale Isolated Gesture Recognition Dataset (59.21%), and the NTU RGB+D Dataset (87.08% cross-subject and 84.22% cross-view) even though only the depth modality was used.Comment: arXiv admin note: text overlap with arXiv:1701.01814, arXiv:1608.0633

    Sonocatalytic Degradation of Rhodamine B in Aqueous Solution in the Presence of Tio2 Coated Activated Carbon

    Get PDF
    AbstractSynthesis of titanium dioxide coated activated carbon (TiO2/AC) has been undertaken using sol-gel method and its application in Rhodamine B (RB) dye removal has been investigated. The synthesized sonocatalyst (TiO2/AC) was characterized by using SEM and FTIR techniques. The effects of the TiO2/AC on the sonocatalytic degradation of RB dye and the operational parameters such as pH, temperature, ultrasonic frequency with the presence/absence of sonocatalyst of the sonocatalytic degradation of RB were concerned in this study. The degradation efficiency of RB in aqueous solution could be achieved 82.21% with the addition of TiO2/AC at the best conditions. The best conditions for sonocatalytic degradation of RB were found to be pH 6, temperature 50°C, ultrasonic frequency of 30kHz with the presence of sonocatalyst for 60minutes

    Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

    Full text link
    The relational data model was designed to facilitate large-scale data management and analytics. We consider the problem of how to differentiate computations expressed relationally. We show experimentally that a relational engine running an auto-differentiated relational algorithm can easily scale to very large datasets, and is competitive with state-of-the-art, special-purpose systems for large-scale distributed machine learning.Comment: ICML 202
    corecore