34 research outputs found

    Comparing the pooled cohort equations and coronary artery calcium scores in a symptomatic mixed Asian cohort

    Get PDF
    BackgroundThe value of pooled cohort equations (PCE) as a predictor of major adverse cardiovascular events (MACE) is poorly established among symptomatic patients. Coronary artery calcium (CAC) assessment further improves risk prediction, but non-Western studies are lacking. This study aims to compare PCE and CAC scores within a symptomatic mixed Asian cohort, and to evaluate the incremental value of CAC in predicting MACE, as well as in subgroups based on statin use.MethodsConsecutive patients with stable chest pain who underwent cardiac computed tomography were recruited. Logistic regression was performed to determine the association between risk factors and MACE. Cohort and statin-use subgroup comparisons were done for PCE against Agatston score in predicting MACE.ResultsOf 501 patients included, mean (SD) age was 53.7 (10.8) years, mean follow-up period was 4.64 (0.66) years, 43.5% were female, 48.3% used statins, and 50.0% had no CAC. MI occurred in 8 subjects while 9 subjects underwent revascularization. In the general cohort, age, presence of CAC, and ln(Volume) (OR = 1.05, 7.95, and 1.44, respectively) as well as age and PCE score for the CAC = 0 subgroup (OR = 1.16 and 2.24, respectively), were significantly associated with MACE. None of the risk factors were significantly associated with MACE in the CAC > 0 subgroup. Overall, the PCE, Agatston, and their combination obtained an area under the receiver operating characteristic curve (AUC) of 0.501, 0.662, and 0.661, respectively. Separately, the AUC of PCE, Agatston, and their combination for statin non-users were 0.679, 0.753, and 0.734, while that for statin-users were 0.585, 0.615, and 0.631, respectively. Only the performance of PCE alone was statistically significant (p = 0.025) when compared between statin-users (0.507) and non-users (0.783).ConclusionIn a symptomatic mixed Asian cohort, age, presence of CAC, and ln(Volume) were independently associated with MACE for the overall subgroup, age and PCE score for the CAC = 0 subgroup, and no risk factor for the CAC > 0 subgroup. Whilst the PCE performance deteriorated in statin versus non-statin users, the Agatston score performed consistently in both groups

    Asian Pacific Society of Cardiology Consensus Recommendations for Pre-participation Screening in Young Competitive Athletes

    Get PDF
    Sports-related sudden cardiac death is a rare but devastating consequence of sports participation. Certain pathologies underlying sports-related sudden cardiac death could have been picked up pre-participation and the affected athletes advised on appropriate preventive measures and/or suitability for training or competition. However, mass screening efforts – especially in healthy young populations – are fraught with challenges, most notably the need to balance scarce medical resources and sustainability of such screening programmes, in healthcare systems that are already stretched. Given the rising trend of young sports participants across the Asia-Pacific region, the working group of the Asian Pacific Society of Cardiology (APSC) developed a sports classification system that incorporates dynamic and static components of various sports, with deliberate integration of sports events unique to the Asia-Pacific region. The APSC expert panel reviewed and appraised using the Grading of Recommendations Assessment, Development, and Evaluation system. Consensus recommendations were developed, which were then put to an online vote. Consensus was reached when 80% of votes for a recommendation were agree or neutral. The resulting statements described here provide guidance on the need for cardiovascular pre-participation screening for young competitive athletes based on the intensity of sports they engage in

    A fast-growing dengue virus mutant reveals a dual role of STING in response to infection

    No full text
    The four dengue viruses (DENVs) have evolved multiple mechanisms to ensure its survival. Among these mechanisms is the ability to regulate its replication rate, which may contribute to avoiding premature immune activation that limit infection dissemination: DENVs associated with dengue epidemics have shown slower replication rate than pre-epidemic strains. Correspondingly, wild-type DENVs replicate more slowly than their clinically attenuated derivatives. To understand how DENVs ‘make haste slowly’, we generated and screened for DENV2 mutants with accelerated replication that also induced high type-I interferon (IFN) expression in infected cells. We chanced upon a single NS2B-I114T amino acid substitution, in an otherwise highly conserved amino acid residue. Accelerated DENV2 replication damaged host DNA as mutant infection was dependent on host DNA damage repair factors, namely RAD21, EID3 and NEK5. DNA damage induced cGAS/STING signalling and activated early type-I IFN response that inhibited infection dissemination. Unexpectedly, STING activation also supported mutant DENV replication in infected cells through STING-induced autophagy. Our findings thus show that DENV NS2B has multi-faceted role in controlling DENV replication rate and immune evasion and suggest that the dual role of STING in supporting virus replication within infected cells but inhibiting infection dissemination could be particularly advantageous for live attenuated vaccine development

    Numerical Simulation and Clinical Implications of Stenosis in Coronary Blood Flow

    No full text
    Fractional flow reserve (FFR) is the gold standard to guide coronary interventions. However it can only be obtained via invasive angiography. The objective of this study is to propose a noninvasive method to determine FFRCT by combining computed tomography angiographic (CTA) images and computational fluid dynamics (CFD) technique. Utilizing the method, this study explored the effects of diameter stenosis (DS), stenosis length, and location on FFRCT. The baseline left anterior descending (LAD) model was reconstructed from CTA of a healthy porcine heart. A series of models were created by adding an idealized stenosis (with DS from 45% to 75%, stenosis length from 4 mm to 16 mm, and at 4 locations separately). Through numerical simulations, it was found that FFRCT decreased (from 0.89 to 0.74), when DS increased (from 45% to 75%). Similarly, FFRCT decreased with the increase of stenosis length and the stenosis located at proximal position had lower FFRCT than that at distal position. These findings are consistent with clinical observations. Applying the same method on two patients’ CTA images yielded FFRCT close to the FFR values obtained via invasive angiography. The proposed noninvasive computation of FFRCT is promising for clinical diagnosis of CAD
    corecore