299 research outputs found
Surface Operators in N=2 Abelian Gauge Theory
We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly
prove that for any embedding of surface operators in a general, twisted N=2
pure abelian theory on an arbitrary four-manifold, the parameters transform
naturally under the SL(2,Z) duality of the theory. However, for
nontrivially-embedded surface operators, exact S-duality holds if and only if
the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality
holds up to a c-number at most, regardless. Nevertheless, this observation sets
the stage for a physical proof of a remarkable mathematical result by
Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson
invariants solely in terms of the ordinary Donaldson invariants--which, will
appear, among other things, in forthcoming work. As a prelude to that, the
effective interaction on the corresponding u-plane will be computed. In
addition, the dependence on second Stiefel-Whitney classes and the appearance
of a Spin^c structure in the associated low-energy Seiberg-Witten theory with
surface operators, will also be demonstrated. In the process, we will stumble
upon an interesting phase factor that is otherwise absent in the "unramified"
case.Comment: 46 pages. Minor refinemen
Dynamical Breakdown of Symmetry in a (2+1) Dimensional Model Containing the Chern-Simons Field
We study the vacuum stability of a model of massless scalar and fermionic
fields minimally coupled to a Chern-Simons field. The classical Lagrangian only
involves dimensionless parameters, and the model can be thought as a (2+1)
dimensional analog of the Coleman-Weinberg model. By calculating the effective
potential, we show that dynamical symmetry breakdown occurs in the two-loop
approximation. The vacuum becomes asymmetric and mass generation, for the boson
and fermion fields takes place. Renormalization group arguments are used to
clarify some aspects of the solution.Comment: Minor modifications in the text and figure
Integrated engineering environments for large complex products
An introduction is given to the Engineering Design Centre at the University of Newcastle upon Tyne, along with a brief explanation of the main focus towards large made-to-order products. Three key areas of research at the Centre, which have evolved as a result of collaboration with industrial partners from various sectors of industry, are identified as (1) decision support and optimisation, (2) design for lifecycle, and (3) design integration and co-ordination. A summary of the unique features of large made-to-order products is then presented, which includes the need for integration and co-ordination technologies. Thus, an overview of the existing integration and co-ordination technologies is presented followed by a brief explanation of research in these areas at the Engineering Design Centre. A more detailed description is then presented regarding the co-ordination aspect of research being conducted at the Engineering Design Centre, in collaboration with the CAD Centre at the University of Strathclyde. Concurrent Engineering is acknowledged as a strategy for improving the design process, however design coordination is viewed as a principal requirement for its successful implementation. That is, design co-ordination is proposed as being the key to a mechanism that is able to maximise and realise any potential opportunity of concurrency. Thus, an agentoriented approach to co-ordination is presented, which incorporates various types of agents responsible for managing their respective activities. The co-ordinated approach, which is implemented within the Design Co-ordination System, includes features such as resource management and monitoring, dynamic scheduling, activity direction, task enactment, and information management. An application of the Design Co-ordination System, in conjunction with a robust concept exploration tool, shows that the computational design analysis involved in evaluating many design concepts can be performed more efficiently through a co-ordinated approach
First order Born-Infeld Hydrodynamics via Gauge/Gravity Duality
By performing a derivative expansion on a class of boosted Born-Infeld-AdS_5
black branes, we study the hydrodynamics of the dual field theory - in the
spirit of AdS/CFT correspondence. We determine the fluid dynamical
stress-energy tensor to first order, and find that the ratio of the shear
viscosity to entropy density conforms to the universal value of to all
orders of the inverse of the Born-Infeld parameter.Comment: 14 pages, JHEP3, minor revision
Optical Hall conductivity of systems with gapped spectral nodes
We calculate the optical Hall conductivity within the Kubo formalism for
systems with gapped spectral nodes, where the latter have a power-law
dispersion with exponent n. The optical conductivity is proportional to n and
there is a characteristic logarithmic singularity as the frequency approaches
the gap energy. The optical Hall conductivity is almost unaffected by thermal
fluctuations and disorder for n=1, whereas disorder has a stronger effect on
transport properties if n=2
Sequences of Bubbles and Holes: New Phases of Kaluza-Klein Black Holes
We construct and analyze a large class of exact five- and six-dimensional
regular and static solutions of the vacuum Einstein equations. These solutions
describe sequences of Kaluza-Klein bubbles and black holes, placed alternately
so that the black holes are held apart by the bubbles. Asymptotically the
solutions are Minkowski-space times a circle, i.e. Kaluza-Klein space, so they
are part of the (\mu,n) phase diagram introduced in hep-th/0309116. In
particular, they occupy a hitherto unexplored region of the phase diagram,
since their relative tension exceeds that of the uniform black string. The
solutions contain bubbles and black holes of various topologies, including
six-dimensional black holes with ring topology S^3 x S^1 and tuboid topology
S^2 x S^1 x S^1. The bubbles support the S^1's of the horizons against
gravitational collapse. We find two maps between solutions, one that relates
five- and six-dimensional solutions, and another that relates solutions in the
same dimension by interchanging bubbles and black holes. To illustrate the
richness of the phase structure and the non-uniqueness in the (\mu,n) phase
diagram, we consider in detail particular examples of the general class of
solutions.Comment: 71 pages, 22 figures, v2: Typos fixed, comment added in sec. 5.
Rotating Circular Strings, and Infinite Non-Uniqueness of Black Rings
We present new self-gravitating solutions in five dimensions that describe
circular strings, i.e., rings, electrically coupled to a two-form potential (as
e.g., fundamental strings do), or to a dual magnetic one-form. The rings are
prevented from collapsing by rotation, and they create a field analogous to a
dipole, with no net charge measured at infinity. They can have a regular
horizon, and we show that this implies the existence of an infinite number of
black rings, labeled by a continuous parameter, with the same mass and angular
momentum as neutral black rings and black holes. We also discuss the solution
for a rotating loop of fundamental string. We show how more general rings arise
from intersections of branes with a regular horizon (even at extremality),
closely related to the configurations that yield the four-dimensional black
hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large
extremal ring through a microscopic calculation. Finally, we discuss some
qualitative ideas for a microscopic understanding of neutral and dipole black
rings.Comment: 31 pages, 7 figures. v2: minor changes, added reference. v3:
erroneous values of T_{ww} (eq.(3.39)) and n_p (eq.(5.20)) corrected, and
accompanying discussion amended. In the journal version these corrections
appear as an appended erratum. No major changes involve
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar
The branching ratios and Angular distributions for J/psi decays to Lambda
Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A
The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1
- âŠ