4 research outputs found

    Spin–Orbit Coupling Analyses of the Geometrical Effects on Phosphorescence in Ir(<i>ppy</i>)<sub>3</sub> and Its Derivatives

    No full text
    Theoretical investigations were performed for typical iridium complexes, Ir­(<i>C<sup>∧</sup>N</i>)<sub>3</sub>, Ir­(<i>C<sup>∧</sup>N</i>)<sub>2</sub>(<i>C’<sup>∧</sup>N’</i>), Ir­(<i>C<sup>∧</sup>N</i>)<sub>2</sub>(<i>N <sup>∧</sup>O</i>) and Ir­(<i>C<sup>∧</sup>N</i>)<sub>2</sub>(<i>O<sup>∧</sup>O</i>), at the MCSCF+SOCI+SOC//B3LYP/SBKJC+p level of theory. For Ir­(<i>dfppy</i>)<sub>2</sub>(<i>pic</i>) (so-called FIrpic) and its related complexes, the introduction of a fluoride into <i>ppy</i> ligands provides a blue shift of about 20 nm for emission spectra, while the replacement of a <i>pic</i> ligand by an <i>acac</i> ligand does not seriously affect the emission spectra of these complexes. It is proposed that the homo-<i>cis</i>,hetero-O-<i>cis</i> isomer (HC-<b>5</b>f, see text) of FIrpic should be used as a brighter blue-color material instead of the homo-N-<i>trans</i> isomer (HNT-<b>5</b>f). The energy difference between these isomers is less than 1 kcal/mol, and the energy barrier of the isomerization between these isomers is calculated to be larger than 30 kcal/mol. It was also found that the use of two ancillary ligands, such as Ir­(<i>C<sup>∧</sup>N</i>)­(<i>N <sup>∧</sup>O</i>)<sub>2</sub> and Ir­(<i>C<sup>∧</sup>N</i>)­(<i>O<sup>∧</sup>O</i>)<sub>2</sub>, is unfortunately inappropriate to energetically lift the π* orbital

    Theoretical Analyses on Phosphorescent Processes in Pt(thpy)<sub>2</sub> and Its Derivatives

    No full text
    Theoretical estimation of the peak wavelengths of phosphorescence was performed at the MCSCF+SOCI/SBKJC+p level of theory for several typical platinum complexes in the research field of organic-light-emitting-diodes (OLEDs), where MCSCF+SOCI is the abbreviation of multiconfiguration self-consistent field calculations followed by second-order configuration interaction calculations. The spin–orbit coupling (SOC) integrals among low-lying electronic states of different spin multiplicities were explicitly calculated within the <i>Z</i><sub>eff</sub> approximation. By using these computational methods, the experimental results for peak wavelengths of phosphorescence were reasonably explained for <i>cis</i>-bis­[2-(2′-thienyl)­pyridinato-N,C<sub>3′</sub>]­platinum­(II) and its derivatives. The replacement of one of the 2-(2′-thienyl)­pyridinate (<i>thpy</i>) ligands by a 2,4-pentanedionate (<i>acac</i>) ligand causes a blue shift of the phosphorescent peak by about 10 nm. The use of a 1,3-bis­(phenyl)­propane-1,3-dionate (<i>bpp</i>), 1,3-bis­(<i>n</i>-methoxyphenyl)­propane-1,3-dionate (<i>bmp</i>), or 1,3-bis­(3,4-methoxyphenyl)­propane-1,3-dionate (<i>bdmp</i>) ligand, instead of an <i>acac</i> ligand, has almost no effect on the peak wavelength of phosphorescence. When a benzene ring is fused to a <i>thpy</i> ligand, the peak wavelength is estimated to be 613 or 651 nm for [2,2′-(4′,5′-benzo)­thienyl)­pyridinato-N,C<sub>3′</sub>]­[1,3-bis­(3,4-dibutoxyphenyl)­propane-1,3-dionato-O,O]­platinum­(II) [<i>btp</i>Pt­(bdbp)] and [1-(2′-thienyl)­isoquinolyl-N,C<sub>3′</sub>]­[1,3-bis­(3,4-dibutoxyphenyl)­propane-1,3-dionato-O,O]­platinum­(II) [<i>1tiq</i>Pt­(bdbp)], respectively, after correction of the present computational underestimation. These theoretical estimations are in good agreement with the corresponding observations

    Anthracene-Based Organic Small-Molecule Electron-Injecting Material for Inverted Organic Light-Emitting Diodes

    No full text
    A diphenylanthracene dimethylamine derivative (9-{3,5-di­(<i>N</i>,<i>N</i>-dimethylaminoethoxy)­phenyl}-10-phenyl-anthracene, DPAMA) was synthesized by the Suzuki–Miyaura cross-coupling reaction. Its ammonium salt, 9-{3,5-di­(trimethylammonium ethoxy)­phenyl}-10-phenyl-anthracene dichloride (DPAMA-Cl), was also synthesized as a reference material. DPAMA was characterized by UV–vis and fluorescence spectroscopy, cyclic voltammetry, photoelectron yield spectroscopy, and X-ray photoelectron spectroscopy to evaluate the work function-modifying ability of DPAMA on indium tin oxide (ITO) and ZnO. The work functions of ITO and ZnO changed from 4.4 and 4.0 eV (pristine) to 3.8 and 3.9 eV, respectively. Using this surface modification effect of DPAMA, inverted organic light-emitting diodes were fabricated with device structures of ITO/DPAMA/Alq<sub>3</sub>/NPD/MoO<sub>3</sub>/Al (Alq<sub>3</sub> = tris­(8-hydroxyquinolinato)­aluminum; NPD = <i>N</i>,<i>N</i>′-di-[(1-naphthyl)-<i>N</i>,<i>N</i>′-diphenyl]-1,1′-(biphenyl)-4,4′-diamine) and ITO/ZnO/DPAMA/Alq<sub>3</sub>/NPD/MoO<sub>3</sub>/Al. Both devices showed good performance at the range of current density, 1–300 mA/cm<sup>2</sup>. The best inverted organic light-emitting diodes device showed luminance of 7720 cd/m<sup>2</sup>, current efficiency of 4.51 cd/A, and external quantum efficiency of 1.45%. Also, poly­(3-hexylthiophene):mixed phenyl-C<sub>61</sub> and C<sub>71</sub> butyric acid methyl ester-based organic solar cells using DPAMA and DPAMA-Cl as electron-transporting materials showed power conversion efficiencies of 3.3 and 3.4%, respectively

    موسى بن محمد قاضي زاده الرومي. أشكال التأسيس

    No full text
    Numérisation effectuée à partir d'un document de substitution.Commentaire des Aškāl al-ta'sīs de Muḥammad ibn Ašraf al-Samarqandī. Titre au f. 2. Inc. (f. 2v) : الحمد لله الذي خلق كل شيء بقدر وقدر له ما يليق من أشكال وصور... وبعد فإن الهندسة مع متانة مسائلها Exp. (f. 50v) : وهذه الأشكال الخمسة الأخيرة من ثانية كتاب الأصول لأقليدس وليكن هذا آخر الكلام وقد تم الكتاب Copie achevée par ʿAbd al-Qādir ibn Muṣṭafā al-Ḥallāq le 12 šawwāl 1176 h. / 26 avril 1763.Cachet et marque du commanditaire de la copie : Muḥammad ʿĀrif, mudarris à Dār al-Sulṭana, Marque de possession de Muḥammad ibn Ḥusayn (?) (f. 1). Indication de prix : 15 piastres (f. 1). Marque à l'encre violette datée du 3 šaʿbān 1361 h. / 16 août 1942, au nom de Muḥammad al-Amīn ibn Muḥammad ʿAbd Allāh (f. 1v
    corecore