2,315 research outputs found

    The Heun equation and the Calogero-Moser-Sutherland system V: generalized Darboux transformations

    Full text link
    We obtain isomonodromic transformations for Heun's equation by generalizing Darboux transformation, and we find pairs and triplets of Heun's equation which have the same monodromy structure. By composing generalized Darboux transformations, we establish a new construction of the commuting operator which ensures finite-gap property. As an application, we prove conjectures in part III.Comment: 24 page

    Opportunities and Constraints when Balancing Work and Family Roles in Institutional and Non-Institutional Contexts in Sri Lanka

    Get PDF
    This paper offers insight into Sri Lanka’s institutional (state and organizational level) and non-institutional (socio-cultural) context in terms of available opportunities and constraints for achieving balance in work and non-work roles. The paper identifies that state policies, laws, and organizational work-family initiatives/practices sometimes act against their main objective of mitigating the difficulties of employees. These policies seek to advance the quality of employee’s quality of life, and that of their families – especially women and children. These projected benefits can be hindered by the island’s social and cultural setting. Further, it provides some implications for policymakers as well as corresponding authorities to mitigate the above-identified constraints.KeywordsWork-life Balance; Opportunities; Constraints; Institutional andNon-institutional; Sri Lank

    Global dust model intercomparison in AeroCom phase I

    Get PDF
    This study presents the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations related to desert dust aerosols, their direct radiative effect, and their impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström exponent (AE), coarse mode AOD and dust surface concentrations are included to extend the assessment of model performance and to identify common biases present in models. These data comprise a benchmark dataset that is proposed for model inspection and future dust model development. There are large differences among the global models that simulate the dust cycle and its impact on climate. In general, models simulate the climatology of vertically integrated parameters (AOD and AE) within a factor of two whereas the total deposition and surface concentration are reproduced within a factor of 10. In addition, smaller mean normalized bias and root mean square errors are obtained for the climatology of AOD and AE than for total deposition and surface concentration. Characteristics of the datasets used and their uncertainties may influence these differences. Large uncertainties still exist with respect to the deposition fluxes in the southern oceans. Further measurements and model studies are necessary to assess the general model performance to reproduce dust deposition in ocean regions sensible to iron contributions. Models overestimate the wet deposition in regions dominated by dry deposition. They generally simulate more realistic surface concentration at stations downwind of the main sources than at remote ones. Most models simulate the gradient in AOD and AE between the different dusty regions. However the seasonality and magnitude of both variables is better simulated at African stations than Middle East ones. The models simulate the offshore transport of West Africa throughout the year but they overestimate the AOD and they transport too fine particles. The models also reproduce the dust transport across the Atlantic in the summer in terms of both AOD and AE but not so well in winter-spring nor the southward displacement of the dust cloud that is responsible of the dust transport into South America. Based on the dependency of AOD on aerosol burden and size distribution we use model bias with respect to AOD and AE to infer the bias of the dust emissions in Africa and the Middle East. According to this analysis we suggest that a range of possible emissions for North Africa is 400 to 2200 Tg yr-1 and in the Middle East 26 to 526 Tg yr-1

    Out-of-plane dielectric constant and insulator-superconductor transition in Bi_2Sr_2Dy_{1-x}Er_xCu_2O_8 single crystals

    Full text link
    The out-of-plane dielectric constant of the parent insulator of the high-temperature superconductor Bi_2Sr_2(Dy,Er)Cu_2O_8 was measured and analysed from 80 to 300 K in the frequency range of 10^6-10^9 Hz. All the samples were found to show a fairly large value of 10-60, implying some kind of charge inhomogeneity in the CuO_2 plane. Considering that the superconducting sample Bi_2Sr_2(Ca,Pr)Cu_2O_8 also shows a similar dielectric constant, the charge inhomogeneity plays an important role in the insulator-superconductor transition.Comment: RevTex4 format, 5 pages, 3 figures, submitted to J. Phys. Condens. Ma

    A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model

    Get PDF
    The direct radiative forcing by sulfate aerosols is still uncertain, mainly because the uncertainties are largely derived from differences in sulfate column burdens and its vertical distributions among global aerosol models. One possible reason for the large difference in the computed values is that the radiative forcing delicately depends on various simplifications of the sulfur processes made in the models. In this study, therefore, we investigated impacts of different parts of the sulfur chemistry module in a global aerosol model, SPRINTARS, on the sulfate distribution and its radiative forcing. Important studies were effects of simplified and more physical-based sulfur processes in terms of treatment of sulfur chemistry, oxidant chemistry, and dry deposition process of sulfur components. The results showed that the difference in the aqueous-phase sulfur chemistry among these treatments has the largest impact on the sulfate distribution. Introduction of all the improvements mentioned above brought the model values noticeably closer to in-situ measurements than those in the simplified methods used in the original SPRINTARS model. At the same time, these improvements also brought the computed sulfate column burdens and its vertical distributions into good agreement with other AEROCOM model values. The global annual mean radiative forcing due to the direct effect of anthropogenic sulfate aerosol was thus estimated to be −0.26 W m<sup>−2</sup> (−0.30 W m<sup>−2</sup> with a different SO<sub>2</sub> inventory), whereas the original SPRINTARS model showed −0.18 W m<sup>−2</sup> (−0.21 W m<sup>−2</sup> with a different SO<sub>2</sub> inventory). The magnitude of the difference between original and improved methods was approximately 50% of the uncertainty among estimates by the world's global aerosol models reported by the IPCC-AR4 assessment report. Findings in the present study, therefore, may suggest that the model differences in the simplifications of the sulfur processes are still a part of the large uncertainty in their simulated radiative forcings

    The decomposition of level-1 irreducible highest weight modules with respect to the level-0 actions of the quantum affine algebra Uq(sl^n)U'_q(\hat{sl}_n)

    Full text link
    We decompose the level-1 irreducible highest weight modules of the quantum affine algebra Uq(sl^n)U_q(\hat{sl}_n) with respect to the level-0 Uq(sl^n)U'_q (\hat{sl}_n)--action defined in q-alg/9702024. The decomposition is parameterized by the skew Young diagrams of the border strip type.Comment: 22 pages, AMSLaTe

    Simulation of aerosol optical properties over a tropical urban site in India using a global model and its comparison with ground measurements

    Get PDF
    Aerosols have great impacts on atmospheric environment, human health, and earth's climate. Therefore, information on their spatial and temporal distribution is of paramount importance. Despite numerous studies have examined the variation and trends of BC and AOD over India, only very few have focused on their spatial distribution or even correlating the observations with model simulations. In the present study, a three-dimensional aerosol transport-radiation model coupled with a general circulation model. SPRINTARS, simulated atmospheric aerosol distributions including BC and aerosol optical properties, i.e., aerosol optical thickness (AOT), Ångström Exponent (AE), and single scattering albedo (SSA). The simulated results are compared with both BC measurements by aethalometer and aerosol optical properties measured by ground-based skyradiometer and by satellite sensor, MODIS/Terra over Hyderabad, which is a tropical urban area of India, for the year 2008. The simulated AOT and AE in Hyderabad are found to be comparable to ground-based measured ones. The simulated SSA tends to be higher than the ground-based measurements. Both these comparisons of aerosol optical properties between the simulations with different emission inventories and the measurements indicate that, firstly the model uncertainties derived from aerosol emission inventory cannot explain the gaps between the simulations and the measurements and secondly the vertical transport of BC and the treatment of BC-containing particles can be the main issue in the global model to solve the gap

    Comparative study of macroscopic quantum tunneling in Bi_2Sr_2CaCu_2O_y intrinsic Josephson junctions with different device structures

    Get PDF
    We investigated macroscopic quantum tunneling (MQT) of Bi2_2Sr2_2CaCu2_2Oy_y intrinsic Josephson junctions (IJJs) with two device structures. One is a nanometer-thick small mesa structure with only two or three IJJs and the other is a stack of a few hundreds of IJJs on a narrow bridge structure. Experimental results of switching current distribution for the first switching events from zero-voltage state showed a good agreement with the conventional theory for a single Josephson junction, indicating that a crossover temperature from thermal activation to MQT regime for the former device structure was as high as that for the latter device structure. Together with the observation of multiphoton transitions between quantized energy levels in MQT regime, these results strongly suggest that the observed MQT behavior is intrinsic to a single IJJ in high-TcT_c cuprates, independent of device structures. The switching current distribution for the second switching events from the first resistive state, which were carefully distinguished from the first switchings, was also compared between two device structures. In spite of the difference in the heat transfer environment, the second switching events for both devices were found to show a similar temperature-independent behavior up to a much higher temperature than the crossover temperature for the first switching. We argue that it cannot be explained in terms of the self-heating owing to dissipative currents after the first switching. As possible candidates, the MQT process for the second switching and the effective increase of electronic temperature due to quasiparticle injection are discussed.Comment: 10pages, 7figures, submitted to Phys. Rev.
    corecore