11 research outputs found

    Dosimetric comparison among dynamic conformal arc therapy, coplanar and non-coplanar volumetric modulated arc therapy for single brain metastasis

    Get PDF
    In the delivery of stereotactic radiosurgery (SRS) by linear accelerator (LINAC), dynamic conformal arc therapy (DCAT) with non-coplanar beams is conventionally used. However, volumetric modulated arc therapy (VMAT) can improve target conformity, thereby decreasing the dose to organs at risk by inversed planning methods, but few studies have directly compared DCAT and VMAT with and without non-coplanar beams in patients with single brain metastasis. We therefore conducted a planning study to compare the dose distribution in DCAT, VMAT using only a coplanar arc (CoVMAT) and VMAT with non-coplanar arcs (NcVMAT) in the treatment of single brain metastasis. DCAT, CoVMAT and NcVMAT plans were created for 15 patients. The three modalities were compared in terms of target conformity, target coverage, the dose to normal brain tissue, monitor units (MUs) and beam-on time. Both conformity indices (RTOG-CI and IP-CI) as well as the D98% of the gross target volume (GTV) were significantly better in the NcVMAT plans than in the DCAT plans. Comparisons of the doses to normal brain tissue revealed that the V20Gy, V15Gy, V12Gy, V10Gy and V5Gy were significantly smaller in the NcVMAT plans than in the plans based on the other two modalities. The MUs of the DCAT and NcVMAT plans were larger than those of the CoVMAT plans, and the beam-on time was longer in the NcVMAT and CoVMAT plans than in the DCAT plans. Compared to the CoVMAT and DCAT plans, NcVMAT plans significantly improved target conformity and reduced the doses to normal brain tissue at V20Gy, V15Gy, V12Gy, V10Gy and V5Gy

    Interfractional target changes in brain metastases during 13-fraction stereotactic radiotherapy

    Get PDF
    [Background] The risk for radiation necrosis is lower in fractionated stereotactic radiotherapy (SRT) than in conventional radiotherapy, and 13-fraction SRT is our method of choice for the treatment of brain metastases ≥ around 2 cm or patients who are expected to have a good prognosis. As 13-fraction SRT lasts for at least 17 days, adaptive radiotherapy based on contrast-enhanced mid-treatment magnetic resonance imaging (MRI) is often necessary for patients undergoing 13-fraction SRT. In this study, we retrospectively analyzed interfractional target changes in patients with brain metastases treated with 13-fraction SRT. [Methods] Our analyses included data from 23 patients and 27 metastatic brain lesions treated with 13-fraction SRT with dynamic conformal arc therapy. The peripheral dose prescribed to the planning target volume (PTV) was 39–44.2 Gy in 13-fractions. The gross tumor volume (GTV) of the initial SRT plan (initial GTV), initial PTV, and modified GTV based on the mid-treatment MRI scan (mid-treatment GTV) were assessed. [Results] The median initial GTV was 3.8 cm3 and the median time from SRT initiation to the mid-treatment MRI scan was 6 days. Compared to the initial GTV, the mid-treatment GTV increased by more than 20% in five lesions and decreased by more than 20% in five lesions. Interfractional GTV volume changes of more than 20% were not significantly associated with primary disease or the presence of cystic components/necrosis. The mid-treatment GTV did not overlap perfectly with the initial PTV in more than half of the lesions. [Conclusions] Compared to the initial GTV, the mid-treatment GTV changed by more than 20% in almost one-third of lesions treated with 13-fraction SRT. As SRT usually generates a steep dose gradient as well as increasing the maximum dose of PTV compared to conventional radiotherapy, assessment of the volume and locational target changes and adaptive radiotherapy should be considered as the number of fractions increases

    Development and validation of a prognostic model for non-lung cancer death in elderly patients treated with stereotactic body radiotherapy for non-small cell lung cancer

    Get PDF
    This study sought to develop and validate a prognostic model for non-lung cancer death (NLCD) in elderly patients with non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT). Patients aged ≥65 diagnosed with NSCLC (Tis-4N0M0), tumor diameter ≤5 cm and SBRT between 1998 and 2015 were retrospectively registered from two independent institutions. One institution was used for model development (arm D, 353 patients) and the other for validation (arm V, 401 patients). To identify risk factors for NLCD, multiple regression analysis on age, sex, performance status (PS), body mass index (BMI), Charlson comorbidity index (CCI), tumor diameter, histology and T-stage was performed on arm D. A score calculated using the regression coefficient was assigned to each factor and three risk groups were defined based on total score. Scores of 1.0 (BMI ≤18.4), 1.5 (age ≥ 5), 1.5 (PS ≥2), 2.5 (CCI 1 or 2) and 3 (CCI ≥3) were assigned, and risk groups were designated as low (total ≤ 3), intermediate (3.5 or 4) and high (≥4.5). The cumulative incidences of NLCD at 5 years in the low, intermediate and high-risk groups were 6.8, 23 and 40% in arm D, and 23, 19 and 44% in arm V, respectively. The AUC index at 5 years was 0.705 (arm D) and 0.632 (arm V). The proposed scoring system showed usefulness in predicting a high risk of NLCD in elderly patients treated with SBRT for NSCLC

    Peritumoral radiomics features on preoperative thin-slice CT images can predict the spread through air spaces of lung adenocarcinoma

    Get PDF
    The spread through air spaces (STAS) is recognized as a negative prognostic factor in patients with early-stage lung adenocarcinoma. The present study aimed to develop a machine learning model for the prediction of STAS using peritumoral radiomics features extracted from preoperative CT imaging. A total of 339 patients who underwent lobectomy or limited resection for lung adenocarcinoma were included. The patients were randomly divided (3:2) into training and test cohorts. Two prediction models were created using the training cohort: a conventional model based on the tumor consolidation/tumor (C/T) ratio and a machine learning model based on peritumoral radiomics features. The areas under the curve for the two models in the testing cohort were 0.70 and 0.76, respectively ( = 0.045). The cumulative incidence of recurrence (CIR) was significantly higher in the STAS high-risk group when using the radiomics model than that in the low-risk group (44% vs. 4% at 5 years;  = 0.002) in patients who underwent limited resection in the testing cohort. In contrast, the 5-year CIR was not significantly different among patients who underwent lobectomy (17% vs. 11%;  = 0.469). In conclusion, the machine learning model for STAS prediction based on peritumoral radiomics features performed better than the C/T ratio model

    Dosimetric comparison between dual-isocentric dynamic conformal arc therapy and mono-isocentric volumetric-modulated arc therapy for two large brain metastases

    Get PDF
    Mono-isocentric volumetric-modulated arc therapy (VMAT) can be used to treat multiple brain metastases. It remains unknown whether mono-isocentric VMAT can improve the dose distribution compared with dual-isocentric dynamic conformal arc therapy (DCAT), especially for two brain metastases. We compared the dose distribution between dual-isocentric DCAT and mono-isocentric VMAT for two large brain metastases, and analyzed the relationship between the distance between the two targets and the difference in dose distribution. A total of 19 patients, each with two large brain metastases, were enrolled. The dose prescribed for each planning target volume (PTV) was 28 Gy in five fractions (D99.8 = 100%). We created new indices derived from conformity indices suggested by the Radiation Therapy Oncology Group (RTOG; mRTOG-CI) and Paddick et al. (mIP-CI), using the dosimetric parameters of the sum of the two PTVs. The median PTV was 5.05 cm³ (range, 2.10–28.47). VMAT significantly improved mRTOG-CI and mIP-CI compared with DCAT. In all cases, VMAT was able to improve mRTOG-CI and mIP-CI compared with DCAT. Whereas the normal brain volume receiving 5 Gy was similar between the two modalities, the normal brain receiving 10, 12, 15, 20, 25 and 28 Gy (V₁₀-V₂₈) was significantly smaller in VMAT. The mean beam-on times were 213.3 s and 121.9 s in DCAT and VMAT, respectively (P < 0.001). Mono-isocentric VMAT improved the target conformity and reduced the beam-on time and V₁₀-V₂₈ of the normal brain for not only two close metastases but also two distant metastases. Mono-isocentric VMAT seems to be a promising treatment technique for two large brain metastases

    International prostate symptom score (IPSS) change and changing factor in intensity-modulated radiotherapy combined with androgen deprivation therapy for prostate cancer

    No full text
    The purposes of this study on prostate cancer are to demonstrate the time course of International Prostate Symptom Score (IPSS) after intensity-modulated radiation therapy (IMRT) combined with androgen deprivation therapy (ADT) and to examine the factor associated with the IPSS change. This study included 216 patients treated with IMRT between 2006 and 2010. Patients were evaluated in three groups according to baseline IPSS as defined by the American Urological Association classification, where IPSSs of 0 to 7, 8 to 19, and 20 to 35 represent mild (n = 124), moderate (n = 70), and severe (n = 22) symptom groups, respectively. The average IPSSs ± standard deviation at baseline vs. those at 24 months after IMRT were 3.5 ± 2.1 vs. 5.1 ± 3.6 in the mild group (P < 0.001), 12.6 ± 3.4 vs. 10.0 ± 6.0 in the moderate group (P = 0.0015), and 23.8 ± 2.9 vs. 14.4 ± 9.1 in the severe group (P < 0.001). Among factors of patient and treatment characteristics, age, IPSS classification, pretreatment GU medications, and positive biopsy rates were associated with the IPSS difference between baseline and 24 months (P = 0.023, < 0.001, 0.044, and 0.028, respectively). In conclusion, patients with moderate to severe urinary symptoms can exhibit improvement in urinary function after IMRT, whereas patients with mild symptoms may have slightly worsened functions. Age, baseline IPSS, GU medications, and tumor burden in the prostate can have an effect on the IPSS changes
    corecore