136 research outputs found

    Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Get PDF
    New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO), whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation

    Attempt to Generate a Strong and Uniform Magnetic Field by Face-to-face HTS Bulk Elements in a Magnet System

    Get PDF
    AbstractA unique experimental attempt aiming to obtain a uniform magnetic field space as required for NMR has been carried out with use of HTS bulk magnets. The magnetic poles were activated as 1.8 T (North) and 1.4 T (South) at 30K by applyinga pulsed magnetic field up to 7 T, and positioned face-to-face with gaps less than 70mm. The uniformity of the magnetic field required for detecting the NMR signals isless than 1,500ppm at more than 0.3 T in the cross sectional plane of 2 x 2 mm2. After thepreliminary trials whichrevealed auniformity of 5,421ppm at 0.44 T in a70mm gap, we attached a ferromagnetic iron plate to a magnetic pole surface to change the magnetic field distribution to be concave. The best uniformity of 358ppm at 1.11 T was obtained at 9mm distance from the iron plate surface in a gap of 30mm. It is stated that the concave magnetic field distribution was compensated by the counter conical-shape field, resulting in the uniform field plane

    Adult onset cardiac dilatation in a transgenic mouse line with Galβ1,3GalNAc α2,3-sialyltransferase II (ST3Gal-II) transgenes: a new model for dilated cardiomyopathy

    Get PDF
    Sugar chain abnormalities in glycolipids and glycoproteins are associated with various diseases. Here, we report an adult onset cardiac dilatation in a transgenic mouse line with Galβ1,3GalNAc α2,3-sialyltransferase II (ST3Gal-II) transgenes. The transgenic hearts at the end-stage, at around 7 months old, were enlarged, with enlarged cavities and thin, low-tensile walls, typical of dilated cardiomyopathy. Although no apparent change was found in heart gangliosides, glycosylation of heart proteins was altered. Interestingly, sugar moieties not directly related to the ST3Gal-II catalytic reaction were also changed. Significant increases in calreticulin and calnexin were observed in hearts of the transgenic mice. These results suggest that expression of ST3Gal-II transgenes induces abnormal protein glycosylation, which disorganizes the endoplasmic/sarcoplasmic reticulum quality control system and elevates the calreticulin/calnexin level, resulting in suppression of cardiac function. The transgenic mice showed 100% incidence of adult onset cardiac dilatation, suggesting great potential as a new model for dilated cardiomyopathy

    Significance of IgG4-positive cells in severe eosinophilic chronic rhinosinusitis

    Get PDF
    Background: IgG4 production is regulated by type 2 (IL-4 and IL-13) and regulatory (IL-10) cytokines involved in the pathophysiology of chronic rhinosinusitis (CRS). We sought to determine the pathophysiological characteristics of IgG4-positive cells in sinonasal tissues in CRS, especially eosinophilic CRS (ECRS). Methods: IgG4-positive cells in uncinate tissues (UT) and nasal polyps (NP) were examined by immunohistochemistry. Associations between the number of IgG4-positive cells and clinicopathological factors were analyzed. Receiver operating characteristics (ROC) analysis was performed to determine the cut-off value of IgG4-positive cells in tissue that can predict the post-operative course. Results: IgG4 was mainly expressed in infiltrating plasma and plasmacytoid cells, and the number of IgG4-positive cells was significantly higher in NP, especially those from severe ECRS patients, than in UT. In CRS patients, the number of IgG4-positive cells significantly and positively correlated with blood and tissue eosinophilia, radiological severity, and serum level of total IgE. The number of infiltrating IgG4-positive cells was significantly higher in patients with a poor post-operative course (sustained sinus shadow 6 months after surgery) than in those with a good one. The number of IgG4-positive cells in NP could discriminate patients with a good or a poor post-operative course (area under the curve: 0.769). Also, 73.3% sensitivity and 82.5% specificity were achieved when the cut-off value was set at 17 cells/high-power field. Conclusions: Our results suggest that the local expression of IgG4 on cells may be used as a biomarker that reflects the pathophysiology of CRS, including the post-operative course

    Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals

    Get PDF
    Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout

    Efficient and Directive Generation of Two Distinct Endoderm Lineages from Human ESCs and iPSCs by Differentiation Stage-Specific SOX17 Transduction

    Get PDF
    The establishment of methods for directive differentiation from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is important for regenerative medicine. Although Sry-related HMG box 17 (SOX17) overexpression in ESCs leads to differentiation of either extraembryonic or definitive endoderm cells, respectively, the mechanism of these distinct results remains unknown. Therefore, we utilized a transient adenovirus vector-mediated overexpression system to mimic the SOX17 expression pattern of embryogenesis. The number of alpha-fetoprotein-positive extraembryonic endoderm (ExEn) cells was increased by transient SOX17 transduction in human ESC- and iPSC-derived primitive endoderm cells. In contrast, the number of hematopoietically expressed homeobox (HEX)-positive definitive endoderm (DE) cells, which correspond to the anterior DE in vivo, was increased by transient adenovirus vector-mediated SOX17 expression in human ESC- and iPSC-derived mesendoderm cells. Moreover, hepatocyte-like cells were efficiently generated by sequential transduction of SOX17 and HEX. Our findings show that a stage-specific transduction of SOX17 in the primitive endoderm or mesendoderm promotes directive ExEn or DE differentiation by SOX17 transduction, respectively

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore