135 research outputs found

    Epidermal chloroplasts are defense-related motile organelles equipped with plant immune components

    Get PDF
    植物の表皮細胞に存在する機能未知の小さな葉緑体の存在意義を解明 --表皮葉緑体は免疫因子を搭載して細胞内を移動し病原菌の侵入阻止に関与する--. 京都大学プレスリリース. 2021-05-21.In addition to conspicuous large mesophyll chloroplasts, where most photosynthesis occurs, small epidermal chloroplasts have also been observed in plant leaves. However, the functional significance of this small organelle remains unclear. Here, we present evidence that Arabidopsis epidermal chloroplasts control the entry of fungal pathogens. In entry trials, specialized fungal cells called appressoria triggered dynamic movement of epidermal chloroplasts. This movement is controlled by common regulators of mesophyll chloroplast photorelocation movement, designated as the epidermal chloroplast response (ECR). The ECR occurs when the PEN2 myrosinase-related higher-layer antifungal system becomes ineffective, and blockage of the distinct steps of the ECR commonly decreases preinvasive nonhost resistance against fungi. Furthermore, immune components were preferentially localized to epidermal chloroplasts, contributing to antifungal nonhost resistance in the pen2 background. Our findings reveal that atypical small chloroplasts act as defense-related motile organelles by specifically positioning immune components in the plant epidermis, which is the first site of contact between the plant and pathogens. Thus, this work deepens our understanding of the functions of epidermal chloroplasts

    Subcellular dynamics of red clover necrotic mosaic virus double-stranded RNAs in infected plant cells

    Get PDF
    New evidences are emerging to support the importance of viral replication complexes (VRCs) in not only viral replication, but also viral cell-to-cell movement. Currently, how VRCs grow in size and colocalize with viral movement proteins (MPs) remains unclear. Herein, we performed live-cell imaging of red clover necrotic mosaic virus (RCNMV) dsRNA by using reporter B2-GFP plants. Tiny granules of dsRNA were formed along the endoplasmic reticulum (ER) at an early stage of infection. Importantly, the colocalization of the dsRNA granules with the virus-encoded p27 replication protein showed that these structures are components of VRCs. These granules moved throughout the cytoplasm, driven by the acto–myosin system, and coalesced with each other to form larger aggregates; the MPs were not associated with these processes. Notably, the MPs colocalized preferentially with large dsRNA aggregates, rather than with tiny dsRNA granules, suggesting that the increase in the size of VRCs promotes their colocalization with MPs

    Comparative transient expression analyses on two conserved effectors of Colletotrichum orbiculare reveal their distinct cell death‐inducing activities between Nicotiana benthamiana and melon

    Get PDF
    Colletotrichum orbiculare infects cucurbits, such as cucumber and melon (Cucumis melo), as well as the model Solanaceae plant Nicotiana benthamiana, by secreting an arsenal of effectors that suppress the immunity of these distinct plants. Two conserved effectors of C. orbiculare, called NLP1 and NIS1, induce cell death responses in N. benthamiana, but it is unclear whether they exhibit the same activity in Cucurbitaceae plants. In this study, we established a new Agrobacterium-mediated transient expression system to investigate the cell death-inducing activity of NLP1 and NIS1 in melon. NLP1 strongly induced cell death in melon but, in contrast to the effects seen in N. benthamiana, mutations either in the heptapeptide motif or in the putative glycosylinositol phosphorylceramide-binding site did not cancel its cell death-inducing activity in melon. Furthermore, NLP1 lacking the signal peptide caused cell death in melon but not in N. benthamiana. Study of the transient expression of NIS1 also revealed that, unlike in N. benthamiana, NIS1 did not induce cell death in melon. In contrast, NIS1 suppressed flg22-induced reactive oxygen species generation in melon, as seen in N. benthamiana. These findings indicate distinct cell death-inducing activities of NLP1 and NIS1 in these two plant species that C. orbiculare infects

    Function of glutathione in Arabidopsis immunity and glucosinolate metabolism

    Get PDF
    Induced defense responses in plants usually involve biosynthesis of antimicrobial metabolites and their targeted secretion at the site of pathogen contact. Our recent study on the model plant Arabidopsis revealed a novel pathogen triggered metabolism pathway for glucosinolates, amino acid-derived thio-glucosides characteristic for crucifer plants that so far were mainly known as insect deterrents (Bednarek et al. 2009)

    Interfamily Transfer of Dual NB-LRR Genes Confers Resistance to Multiple Pathogens

    Get PDF
    A major class of disease resistance (R) genes which encode nucleotide binding and leucine rich repeat (NB-LRR) proteins have been used in traditional breeding programs for crop protection. However, it has been difficult to functionally transfer NB-LRR-type R genes in taxonomically distinct families. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and Brassica napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Importantly, RPS4/RRS1 transgenic plants show no autoimmune phenotypes, indicating that the NB-LRR proteins are tightly regulated. The successful transfer of two R genes at the family level implies that the downstream components of R genes are highly conserved. The functional interfamily transfer of R genes can be a powerful strategy for providing resistance to a broad range of pathogens

    Selective deployment of virulence effectors correlates with host specificity in a fungal plant pathogen

    Get PDF
    なぜ病原菌は特定の作物にのみ感染するのか --植物病原菌の宿主特異性の鍵因子--. 京都大学プレスリリース. 2023-03-23.Fungus has a host of issues: KyotoU discovers how toxic fungi target specific host plants. 京都大学プレスリリース. 2023-06-07.The hemibiotrophic fungal plant pathogen Colletotrichum orbiculare is predicted to secrete hundreds of effector proteins when the pathogen infects cucurbit crops, such as cucumber and melon, and tobacco (Nicotiana benthamiana), a distantly related Solanaceae species. Here, we report the identification of sets of C. orbiculare effector genes that are differentially required for fungal virulence to two phylogenetically distant host species. Through targeted gene knockout screening of C. orbiculare ‘core’ effector candidates defined based on in planta gene expression, we identified: four host-specific virulence effectors (named effector proteins for cucurbit infection, or EPCs) that are required for full virulence of C. orbiculare to cucurbit hosts, but not to the Solanaceae host N. benthamiana; and five host-nonspecific virulence effectors, which collectively contribute to fungal virulence to both hosts. During host infection, only a small subset of genes, including the host-specific EPC effector genes, showed preferential expression on one of the hosts, while gene expression profiles of the majority of other genes, including the five host-nonspecific effector genes, were common to both hosts. This work suggests that C. orbiculare adopts a host-specific effector deployment strategy, in addition to general host-blind virulence mechanisms, for adaptation to cucurbit hosts

    Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana

    Get PDF
    Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection, however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species (ROS) triggered by two different pathogen-associated molecular patterns (PAMPs), chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five β-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel β-barrel structure. However, the β-strands were found to display a unique topology, one pair of these β-strands formed a parallel β-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress PAMP-triggered immunity (PTI) in N. benthamiana
    corecore