4,730 research outputs found

    Palladium Catalysts for Dehydrogenation of Ammonia Borane with Preferential B−H Activation

    Get PDF
    Cationic Pd(II) complexes catalyzed the dehydrogenation of ammonia borane in the most efficient manner with the release of 2.0 equiv of H_2 in less than 60 s at 25 °C. Most of the hydrogen atoms were obtained from the boron atom of the ammonia borane. The first step of the dehydrogenation reaction was elaborated using density functional theory calculations

    Application of Copula-Based Markov Model to Generate Monthly Precipitation

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    IDENTIFYING CRITICAL KINEMATIC PARAMETERS FOR BETTER GOLF PUTTING

    Get PDF
    In modern golf competition, putting is one of the crucial parts of the game. It has been reported that putting accounts for about 40% of all golf shot played in tournaments (Gwyn & Patch, 1993). Wiren (1992) also indicated that, on average, putting constitutes 38% of all golf strokes in competition and improving putting skills is th e fastest way to lower the score. However, it is also true that most recreational golfers neglect the putting and seldom practice it hard. Despite this revealing statistics and the obvious importance of competent putting, much of the pedagogical literature is based on the observations and anecdotal evidence provided by top players and coaches (Paradisis & Rees, 2004). Therefore, the purpose of this study was to identify critical kinematic parameters of a putt by comparing putts performed by elite and novice golifers, and nongolfers. The findings might provide valuable information for improving putting performance

    Bocavirus Infection in Hospitalized Children, South Korea

    Get PDF
    This study presents the first evidence of human bocavirus infection in South Korean children. The virus was detected in 27 (8.0%) of 336 tested specimens, including 17 (7.5%) of 225 virus-negative specimens, collected from children with acute lower respiratory tract infection

    Effects of Distilled Cervi Pantotrichum Cornu and Rehmannia glutinosa Pharmacopuncture at GB21 (Jianjing) on Heart Rate Variability: A Randomized and Double-blind Clinical Trial

    Get PDF
    AbstractBackground/PurposeThe purpose of this study was to use heart rate variability (HRV) to investigate the effects of distilled Cervi Pantotrichum Cornu pharmacopuncture and Rehmannia glutinosa pharmacopuncture on the autonomic nervous system.Materials and methodsForty healthy male participants were divided into two groups: the participants of the C-group received distilled Cervi Pantotrichum Cornu pharmacopuncture and those of the R-group received Rehmannia glutinosa pharmacopuncture. The study design was a randomized, double-blind clinical trial. Each participant received one of the two solutions injected at GB21 (Jianjing). The changes in HRV were measured seven times using the QECG-3: LXC3203 system (LAXTHA Inc. Korea). Time-dependent changes in HRV for each group were analyzed using the paired t test (significance level: p < 0.05), and the difference in the HRV fluctuations between the two experimental groups was evaluated using the independent sample test (significance level: p < 0.05).Results and conclusionThe results showed that Cervi Pantotrichum Cornu pharmacopuncture and Rehmannia glutinosa pharmacopuncture tended to activate the autonomic nervous system within the normal range. Cervi Pantotrichum Cornu pharmacopuncture tended to activate the sympathetic nervous system, whereas Rehmannia glutinosa pharmacopuncture tended to activate both the sympathetic and parasympathetic nervous systems

    Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyloidogenesis is linked to neuroinflammation. The tyrosine-fructose Maillard reaction product, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal, possesses anti-inflammatory properties in cultured macrophages, and in an arthritis animal model. Because astrocytes and microglia are responsible for amyloidogenesis and inflammatory reactions in the brain, we investigated the anti-inflammatory and anti-amyloidogenic effects of 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal in lipopolysaccharide (LPS)-stimulated astrocytes and microglial BV-2 cells.</p> <p>Methods</p> <p>Cultured astrocytes and microglial BV-2 cells were treated with LPS (1 μg/ml) for 24 h, in the presence (1, 2, 5 μM) or absence of 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal, and harvested. We performed molecular biological analyses to determine the levels of inflammatory and amyloid-related proteins and molecules, cytokines, Aβ, and secretases activity. Nuclear factor-kappa B (NF-κB) DNA binding activity was determined using gel mobility shift assays.</p> <p>Results</p> <p>We found that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal (1, 2, 5 μM) suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the production of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS (1 μg/ml)-stimulated astrocytes and microglial BV-2 cells. Further, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibited the transcriptional and DNA binding activity of NF-κB--a transcription factor that regulates genes involved in neuroinflammation and amyloidogenesis via inhibition of IκB degradation as well as nuclear translocation of p50 and p65. Consistent with the inhibitory effect on inflammatory reactions, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibited LPS-elevated Aβ<sub>42 </sub>levels through attenuation of β- and γ-secretase activities. Moreover, studies using signal transducer and activator of transcription 3 (STAT3) siRNA and a pharmacological inhibitor showed that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibits LPS-induced activation of STAT3.</p> <p>Conclusions</p> <p>These results indicate that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibits neuroinflammatory reactions and amyloidogenesis through inhibition of NF-κB and STAT3 activation, and suggest that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal may be useful for the treatment of neuroinflammatory diseases like Alzheimer's disease.</p
    corecore