153 research outputs found
Historical contingency in species interactions: towards niche-based predictions.
The way species affect one another in ecological communities often depends on the order of species arrival. The magnitude of such historical contingency, known as priority effects, varies across species and environments, but this variation has proven difficult to predict, presenting a major challenge in understanding species interactions and consequences for community structure and function. Here, we argue that improved predictions can be achieved by decomposing species' niches into three components: overlap, impact and requirement. Based on classic theories of community assembly, three hypotheses that emphasise related, but distinct influences of the niche components are proposed: priority effects are stronger among species with higher resource use overlap; species that impact the environment to a greater extent exert stronger priority effects; and species whose growth rate is more sensitive to changes in the environment experience stronger priority effects. Using nectar-inhabiting microorganisms as a model system, we present evidence that these hypotheses complement the conventional hypothesis that focuses on the role of environmental harshness, and show that niches can be twice as predictive when separated into components. Taken together, our hypotheses provide a basis for developing a general framework within which the magnitude of historical contingency in species interactions can be predicted
A framework for priority effects
History of species arrival can influence plant community assembly. In this issue of the Journal of Vegetation Science, Sarneel etĀ al. show that the strength of such historical contingency, or priority effects, varies with soil moisture in riparian plants. We discuss this study within a theoretical framework describing how and when priority effects occur via destabilizing and equalizing mechanisms.History of species arrival can influence plant community assembly. In this issue of the Journal of Vegetation Science, Sarneel etĀ al. show that the strength of such historical contingency, or priority effects, varies with soil moisture in riparian plants. We discuss this study within a theoretical framework describing how and when priority effects occur via destabilizing and equalizing mechanisms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122424/1/jvs12434.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122424/2/jvs12434_am.pd
Evolutionary History, Immigration History, and the Extent of Diversification in Community Assembly
During community assembly, species may accumulate not only by immigration, but also by in situ diversification. Diversification has intrigued biologists because its extent varies even among closely related lineages under similar ecological conditions. Recent research has suggested that some of this puzzling variation may be caused by stochastic differences in the history of immigration (relative timing and order of immigration by founding populations), indicating that immigration and diversification may affect community assembly interactively. However, the conditions under which immigration history affects diversification remain unclear. Here we propose the hypothesis that whether or not immigration history influences the extent of diversification depends on the founding populationsā prior evolutionary history, using evidence from a bacterial experiment. To create genotypes with different evolutionary histories, replicate populations of Pseudomonas fluorescens were allowed to adapt to a novel environment for a short or long period of time (approximately 10 or 100 bacterial generations) with or without exploiters (viral parasites). Each evolved genotype was then introduced to a new habitat either before or after a standard competitor genotype. Most genotypes diversified to a greater extent when introduced before, rather than after, the competitor. However, introduction order did not affect the extent of diversification when the evolved genotype had previously adapted to the environment for a long period of time without exploiters. Diversification of these populations was low regardless of introduction order. These results suggest that the importance of immigration history in diversification can be predicted by the immigrantsā evolutionary past. The hypothesis proposed here may be generally applicable in both micro- and macro-organisms
Plant and root endophyte assembly history: interactive effects on native and exotic plants
Funded by Society for Conservation Biology; National Research Initiative of the USDA Cooperative State Research, Education and Extension Service; Terman Fellowship of Stanford UniversityDifferences in the arrival timing of plants and soil biota may result in different plant communities through priority effects, potentially affecting the success of native vs. exotic plants, but experimental evidence is largely lacking. We conducted a greenhouse experiment to investigate whether the assembly history of plants and fungal root endophytes could interact to influence plant emergence and biomass. We introduced a grass species and eight fungal species from one of three land-use types (undisturbed,
disturbed, or pasture sites in a Florida scrubland) in factorial combinations. We then introduced all plants and fungi from the other land-use types 2 weeks later. Plant emergence was monitored for 6 months, and final plant biomass and fungal species composition
assessed. The emergence and growth of the exotic Melinis repens and the native Schizacharyium niveum were affected negatively when introduced early with their āhomeā fungi, but early introduction of a different plant species or fungi from a different site type
eliminated these negative effects, providing evidence for interactive priority effects. Interactive effects of plant and fungal arrival history may be an overlooked determinant of plant community structure and may provide an effective management tool to inhibit biological invasion and aid ecosystem restoration
Recasting spatial food web ecology as an ecosystem science
Background/questions/methods

Food webs are complex systems in which organisms interact with each other and with the abiotic aspects of their environment, thus acting as the conduit for transfers of energy and nutrients through ecosystems. Classical approaches to food webs focus strongly on patterns and processes occurring at the community level rather than at the broader ecosystem scale. Recent developments in community ecology suggest that spatial processes may be important in affecting food web dynamics and affect ecosystems as well, thus leading to the idea of meta-ecosystems. Here, we make a synthesis on how the links between food web dynamics and spatial ecosystem dynamics may be studied through (i) identifying differences between metacommunity and landscape ecology approaches when dealing with food webs, (ii) arguing that a tighter synthesis of the two approaches is needed for a good understanding of how diversity, ecosystem process and trait distributions in landscapes are related, and (iii) laying out how this gap can be efficiently bridged under the framework of meta-ecosystems.

Results/conclusions

We identify two possible sets of processes that drive spatial food webs and the ecosystems they occur in: trait-dependent processes and material-dependent processes. Both of these have been shown to be important in affecting various aspects of food web ecology and we ask how they may compare to each other and how they may interact. We argue that interactions between them, while complex, are likely and depend strongly on the size of the meta-ecosystem and its connectivity. A more integrative framework to the study of spatial food webs, which takes into account both approaches, might be key in better understanding the links between ecosystem and community dynamics at large spatial scales.

A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia
<p>Abstract</p> <p>Background</p> <p>Cognitive deficits in schizophrenia are associated with psychosocial deficits that are primarily responsible for the poor long-term outcome of this disease. Auditory sensory gating P50 deficits are correlated with neuropsychological deficits in attention, one of the principal cognitive disturbances in schizophrenia. Our studies suggest that the Ī±7 nicotinic acetylcholine receptor (Ī±7 nAChR) agonist tropisetron might be a potential therapeutic drug for cognitive deficits in schizophrenia. Therefore, it is of particular interest to investigate the effects of tropisetron on the cognitive deficits in patients with schizophrenia.</p> <p>Methods</p> <p>A randomised, placebo-controlled trial of tropisetron in patients with schizophrenia was performed. A total of 40 patients with chronic schizophrenia who had taken risperidone (2 to 6 mg/day) were enrolled. Subjects were randomly assigned to a fixed titration of tropisetron (n = 20, 10 mg/day) or placebo (n = 20) in an 8-week double-blind trial. Auditory sensory gating P50 deficits and Quality of Life Scale (QLS), Cambridge Neuropsychological Test Automated Battery (CANTAB), and Positive and Negative Syndrome Scale (PANSS) scores were measured.</p> <p>Results</p> <p>In all, 33 patients completed the trial. Tropisetron was well tolerated. Administration of tropisetron, but not placebo, significantly improved auditory sensory gating P50 deficits in non-smoking patients with schizophrenia. The score on the rapid visual information processing (sustained visual attention) task of CANTAB was significantly improved by tropisetron treatment. Total and subscale scores of PANSS were not changed by this trial. QLS scores in the all patients, but not non-smoking patients, were significantly improved by tropisetron trial.</p> <p>Conclusions</p> <p>This first randomised, double-blind, placebo-controlled trial supports the safety and efficacy of adjunctive tropisetron for treatment of cognitive deficits in schizophrenia.</p
- ā¦