46 research outputs found

    Assessment of Design Procedures for Vertical Borehole Heat Exchangers

    Get PDF
    The use of ground source energy systems is a well-established method to provide low cost heating to buildings, diversify the energy mix and help meeting increasingly stricter sustainability targets. However, considerable uncertainties remain over their efficient design, with several standards, guidelines and manuals being proposed over the last few years. This paper aims at providing insight into the implications to the design of a vertical borehole heat exchanger of the adoption of different design procedures. The hypothetical case of a typical dwelling located in London, UK, is analysed in order to highlight the impact on the final design of the chosen methodology. Moreover, a parametric study using an analytical design procedure was performed to point out the influence of various factors, such as borehole characteristics and thermal properties of the ground. It is shown that there are considerable discrepancies between design methods and that uncertainties in some input parameters, such as the thermal properties of the ground, which for relatively small systems are often selected from tables rather than measured in situ, may have a substantial influence on the length of borehole required

    Numerical interpretation of the coupled hydromechanical behaviour of expansive clays in constant volume column tests

    Get PDF
    © The authors and ICE Publishing: All rights reserved, 2015.Experimental and numerical studies of the behaviour of expansive clays have been attracting increasing interest, due to their good sealing properties, which render them ideal to be used as engineered barriers (buffers) in both active (e.g. nuclear) and non-active waste disposal facilities. Both large scale and laboratory scaled experiments indicate that the sealing capabilities of the buffer are fundamentally governed by its volumetric behaviour when wetted. In this paper, a constant volume column infiltration test, performed under isothermal conditions on compacted MX80 bentonite, is modelled numerically using the Imperial College Finite Element Program (ICFEP). A modified version of the Barcelona Basic Model is used to simulate the behaviour of the buffer, which is inherently partly saturated. The numerical results agree well with the observed experimental data, especially with regard to the advancement of the wetting front. A detailed interpretation of the computed evolutions with time of stress state, suction and void ratio at different elevations along the samples axis is carried out, providing insight into the complex hydro-mechanical response of the buffer during the experiment. Indeed, even though the overall volume of the sample was kept constant, a region of localised dilation, which induced the contraction of other zones of the material, was observed to advance simultaneously with the wetting front along the height of the soil column

    Dissipated energy in undrained cyclic triaxial tests

    Get PDF
    Energy-based methods are an emerging tool for the evaluation of liquefaction potential. These methods relate excess pore water pressure build-up to seismic energy dissipated per unit volume. Further development of these methods require their validation through laboratory testing. In this paper, a comprehensive study of energy dissipated during cyclic triaxial tests is undertaken. Results of undrained cyclic triaxial tests performed on air-pluviated samples of Hostun sand prepared with different initial densities and subjected to several confining pressures and loading amplitudes are presented. The energy dissipated per unit volume is estimated from the experimental results and correlated to the generated excess pore water pressure. The correlation between those quantities appear to be independent of the initial relative density of the sample, isotropic consolidation pressure and cyclic stress ratio used in the tests. Moreover, the relationship between observed doubleamplitude axial strain and the energy dissipated per unit volume is examined. It is found that this relationship is greatly dependent on the relative density of the sample

    On the assessment of energy dissipated through hysteresis in finite element analysis

    No full text
    The accurate reproduction of the hysteretic behaviour exhibited by soils under cyclic loading is a crucial aspect of dynamic finite element analyses and is typically described using the concept of damping ratio. In this paper, a general algorithm is presented for assessing the damping ratio simulated by any constitutive model based on the registered behaviour in three-dimensional stress-strain space. A cyclic nonlinear elastic model capable of accurately reproducing a wide range of features of soil behaviour, including the variation of damping ratio with deformation level, is chosen to illustrate the capabilities of the proposed algorithm. The constitutive model is described and subsequently employed in two sets of finite element analyses, one involving the dynamic response of a sand deposit subjected to different types of motion and another focussing on the simulation of a footing subjected to cyclic vertical loading. The application of the presented algorithm provides insight into the processes through which energy is dissipated through hysteresis

    Thermal effects on the hydraulic conductivity of a granular geomaterial

    Get PDF
    Geotechnical challenges arising from thermal loading are associated with many engineering applications such as ground source energy systems (5℃-40℃) and nuclear waste disposal (in excess of 100℃). The effects of temperature on soils have been the subject of limited research, particularly in terms of the fundamental characterisation of the non-isothermal behaviour of granular geomaterials. This study describes challenges associated with determining the hydraulic conductivity (k_ℎ) of such materials at different temperatures using a bespoke temperature-controlled triaxial apparatus. A methodology is proposed for interpreting thermo-hydro-mechanical (THM) tests on isotropically consolidated specimens and is applied to data obtained for a uniform sand. It is shown that the intrinsic head losses of the system need to be minimised in order to obtain reliable measurements; this requires a detailed calibration procedure. The developed approach is used to determine the hydraulic conductivity at ambient temperature and at 40℃, showing that the increase in k_ℎ with temperature is mostly due to the reduction in the viscosity of water. A detailed analysis of the volumetric response of the sample during heating is also carried out

    Investigating soil-water retention characteristics at high suctions using Relative Humidity control

    Get PDF
    A technique for controlling relative humidity (RH) is presented, which involves supplying a sealed chamber with a continuous flow of air at a computer-regulated RH. The desired value of RH is achieved by mixing dry and wet air at appropriate volumes and is measured for servo-control at three locations in the chamber with capacitive RH sensors and checked with a sensitive VAISALA sensor. The setup is capable of controlling RH steadily and continuously with a deviation of less than 0.2% RH. The technique was adopted to determine wetting soil-water retention curves (SWRC) of statically compacted London Clay, under both free-swelling and constant volume conditions. The RH within the chamber was increased in a step-wise fashion, with each step maintained until vapour equilibrium between the chamber atmosphere and the soil samples was established. Independent filter paper measurements further validate the method, while the obtained retention curves complement those available in the literature for lower ranges of suction

    An alternative coupled thermo-hydro-mechanical finite element formulation for fully saturated soils

    Get PDF
    Accounting for interaction of the soil’s constituents due to temperature change in the design of geo-thermal infrastructure requires numerical algorithms capable of reproducing the coupled thermo-hydro-mechanical (THM) behaviour of soils. This paper proposes a fully coupled and robust THM formulation for fully saturated soils, developed and implemented into a bespoke finite element code. The flexibility of the proposed formulation allows the effect of some coupling components, which are often ignored in existing formulations, to be examined. It is further demonstrated that the proposed formulation recovers accurately thermally induced excess pore water pressures observed in undrained heating tests

    Numerical analysis of coupled thermo-hydraulic problems in geotechnical engineering

    No full text
    © 2016 Elsevier Ltd.Ground source energy systems, such as open-loop systems, have been widely employed in recent years due to their economic and environmental benefits compared to conventional heating and cooling systems. Numerical modelling of such geothermal system requires solving a coupled thermo-hydraulic problem characterised by a convection-dominated heat transfer which can be challenging for the Galerkin finite element method (GFEM). This paper first presents the coupled thermo-hydraulic governing formulation as well as the coupled thermo-hydraulic boundary condition, which can be implemented into a finite element software. Subsequently, the stability condition of the adopted time marching scheme for coupled thermo-hydraulic analysis is established analytically. The behaviour of highly convective problems is then investigated via a series of analyses where convective heat transfer along a soil bar is simulated, with recommendations on the choice of an adequate discretisation with different boundary conditions being provided to avoid oscillatory solutions. Finally, the conclusions from the analytical and numerical studies are applied to the simulation of a boundary value problem involving an open-loop system, with the results showing good agreement with an approximate solution. The main objective of this paper is to demonstrate that the GFEM is capable of dealing with highly convective geotechnical problems
    corecore