research

Dissipated energy in undrained cyclic triaxial tests

Abstract

Energy-based methods are an emerging tool for the evaluation of liquefaction potential. These methods relate excess pore water pressure build-up to seismic energy dissipated per unit volume. Further development of these methods require their validation through laboratory testing. In this paper, a comprehensive study of energy dissipated during cyclic triaxial tests is undertaken. Results of undrained cyclic triaxial tests performed on air-pluviated samples of Hostun sand prepared with different initial densities and subjected to several confining pressures and loading amplitudes are presented. The energy dissipated per unit volume is estimated from the experimental results and correlated to the generated excess pore water pressure. The correlation between those quantities appear to be independent of the initial relative density of the sample, isotropic consolidation pressure and cyclic stress ratio used in the tests. Moreover, the relationship between observed doubleamplitude axial strain and the energy dissipated per unit volume is examined. It is found that this relationship is greatly dependent on the relative density of the sample

    Similar works