245 research outputs found
Passive scalar intermittency in low temperature helium flows
We report new measurements of turbulent mixing of temperature fluctuations in
a low temperature helium gas experiment, spanning a range of microscale
Reynolds number, , from 100 to 650. The exponents of the
temperature structure functions
are shown to saturate to for the highest
orders, . This saturation is a signature of statistics dominated by
front-like structures, the cliffs. Statistics of the cliff characteristics are
performed, particularly their width are shown to scale as the Kolmogorov length
scale.Comment: 4 pages, with 4 figure
Knudsen Diffusion in Silicon Nanochannels
Measurements on helium and argon gas flow through an array of parallel,
linear channels of 12 nm diameter and 200 micrometer length in a single
crystalline silicon membrane reveal a Knudsen diffusion type transport from
10^2 to 10^7 in Knudsen number Kn. The classic scaling prediction for the
transport diffusion coefficient on temperature and mass of diffusing
species,D_He ~ sqrt(T), is confirmed over a T range from 40 K to 300 K for He
and for the ratio of D_He/D_Ar ~ sqrt(m_Ar/m_He). Deviations of the channels
from a cylindrical form, resolved with transmission electron microscopy down to
subnanometer scales, quantitatively account for a reduced diffusivity as
compared to Knudsen diffusion in ideal tubular channels. The membrane
permeation experiments are described over 10 orders of magnitude in Kn,
encompassing the transition flow regime, by the unified flow model of Beskok
and Karniadakis.Comment: 4 pages, 3 figure
Three-dimensional aspects of fluid flows in channels. II. Effects of Meniscus and Thin Film regimes on Viscous Fingers
We perform a three-dimensional study of steady state viscous fingers that
develop in linear channels. By means of a three-dimensional Lattice-Boltzmann
scheme that mimics the full macroscopic equations of motion of the fluid
momentum and order parameter, we study the effect of the thickness of the
channel in two cases. First, for total displacement of the fluids in the
channel thickness direction, we find that the steady state finger is
effectively two-dimensional and that previous two-dimensional results can be
recovered by taking into account the effect of a curved meniscus across the
channel thickness as a contribution to surface stresses. Secondly, when a thin
film develops in the channel thickness direction, the finger narrows with
increasing channel aspect ratio in agreement with experimental results. The
effect of the thin film renders the problem three-dimensional and results
deviate from the two-dimensional prediction.Comment: 9 pages, 10 figure
Particles held by springs in a linear shear flow exhibit oscillatory motion
The dynamics of small spheres, which are held by linear springs in a low
Reynolds number shear flow at neighboring locations is investigated. The flow
elongates the beads and the interplay of the shear gradient with the nonlinear
behavior of the hydrodynamic interaction among the spheres causes in a large
range of parameters a bifurcation to a surprising oscillatory bead motion. The
parameter ranges, wherein this bifurcation is either super- or subcritical, are
determined.Comment: 4 pages, 5 figure
Fluctuations in viscous fingering
Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels
reveal finger width fluctuations that were not observed in previous
experiments, which had lower aspect ratios and higher capillary numbers Ca.
These fluctuations intermittently narrow the finger from its expected width.
The magnitude of these fluctuations is described by a power law, Ca^{-0.64},
which holds for all aspect ratios studied up to the onset of tip instabilities.
Further, for large aspect ratios, the mean finger width exhibits a maximum as
Ca is decreased instead of the predicted monotonic increase.Comment: Revised introduction, smoothed transitions in paper body, and added a
few additional minor results. (Figures unchanged.) 4 pages, 3 figures.
Submitted to PRE Rapi
Slippage of water past superhydrophobic carbon nanotube forests in microchannels
We present in this letter an experimental characterization of liquid flow
slippage over superhydrophobic surfaces made of carbon nanotube forests,
incorporated in microchannels. We make use of a micro-PIV (Particule Image
Velocimetry) technique to achieve the submicrometric resolution on the flow
profile necessary for accurate measurement of the surface hydrodynamic
properties. We demonstrate boundary slippage on the Cassie superhydrophobic
state, associated with slip lengths of a few microns, while a vanishing slip
length is found in the Wenzel state, when the liquid impregnates the surface.
Varying the lateral roughness scale L of our carbon nanotube forest-based
superhydrophobic surfaces, we demonstrate that the slip length varies linearly
with L in line with theoretical predictions for slippage on patterned surfaces.Comment: under revie
A note on the effective slip properties for microchannel flows with ultra-hydrophobic surfaces
A type of super-hydrophobic surface consists of a solid plane boundary with
an array of grooves which, due to the effect of surface tension, prevent a
complete wetting of the wall. The effect is greatest when the grooves are
aligned with the flow. The pressure difference between the liquid and the gas
in the grooves causes a curvature of the liquid surface resisted by surface
tension. The effects of this surface deformation are studied in this paper. The
corrections to the effective slip length produced by the curvature are analyzed
theoretically and a comparison with available data and related mathematical
models is presented.Comment: 19 pages, 5 figure
- …