40 research outputs found

    Active Hippocampal Networks Undergo Spontaneous Synaptic Modification

    Get PDF
    The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial) stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone

    Timolol activates the enzyme activities of human carbonic anhydrase I and II.

    Get PDF
    Timolol, a beta-blocker, has been shown to be an effective ocular hypotensive agent when used alone or with carbonic anhydrase inhibitor on ocular hypertensive or open angle glaucoma patients. The effect of timolol hemihydrate on the CO(2) hydration activities of human carbonic anhydrase (HCA) I and II and their reaction mechanisms were investigated. Timolol activates the enzyme activities of HCA I and HCA II. In HCA I and II, the enzyme kinetic results clearly showed that timolol increases the value of V(max) but does not influence the value of K(m). The enzyme kinetic method showed that timolol noncompetitively activates HCA I and II activities through the formation of a ternary complex consisting of the enzyme, the substrate, and timolol. These results indicate that timolol binds apart from the narrow cavity of the active site. AutoDocking results showed that timolol binds at the entrance of the active site cavity in a region where the proton shuttle residue, His 64, of HCA I or II, is placed. The enzyme kinetic and AutoDocking results showed that timolol might weakly bind near the proton shuttle residue, His 64, to accelerate the proton transfer rate from His 64 to the buffer components. It is known that efficient activators of carbonic anhydrase possess a bulky aromatic/heterocyclic moiety and a primary/secondary amino group in their molecular structure. Timolol has a heterocyclic moiety and a secondary amino group, which are typical structures in efficient activators of carbonic anhydrase.Timolol, a beta-blocker, has been shown to be an effective ocular hypotensive agent when used alone or with carbonic anhydrase inhibitor on ocular hypertensive or open angle glaucoma patients. The effect of timolol hemihydrate on the CO(2) hydration activities of human carbonic anhydrase (HCA) I and II and their reaction mechanisms were investigated. Timolol activates the enzyme activities of HCA I and HCA II. In HCA I and II, the enzyme kinetic results clearly showed that timolol increases the value of V(max) but does not influence the value of K(m). The enzyme kinetic method showed that timolol noncompetitively activates HCA I and II activities through the formation of a ternary complex consisting of the enzyme, the substrate, and timolol. These results indicate that timolol binds apart from the narrow cavity of the active site. AutoDocking results showed that timolol binds at the entrance of the active site cavity in a region where the proton shuttle residue, His 64, of HCA I or II, is placed. The enzyme kinetic and AutoDocking results showed that timolol might weakly bind near the proton shuttle residue, His 64, to accelerate the proton transfer rate from His 64 to the buffer components. It is known that efficient activators of carbonic anhydrase possess a bulky aromatic/heterocyclic moiety and a primary/secondary amino group in their molecular structure. Timolol has a heterocyclic moiety and a secondary amino group, which are typical structures in efficient activators of carbonic anhydrase

    図書館リテラシープログラムの構造化とeラーニングの導入 : よりよい初年次リテラシー教育のために

    Get PDF
    広島大学図書館では、各種の図書館リテラシープログラムを実施している。今年度、新入生対象プログラム全体の構造化をはかり、そのうち情報メディア教育研究センターと連携して行う講義(1 コマ60 分)にe ラーニングを導入したところ、効果が上がったので報告する。タイトル訂正及び版の種類変更: 2012.3.8

    Teaching Library Literacy Using e-Learning : A Report of WebCT Tutorial

    Get PDF
    図書館がリテラシー教育の授業を実施するにあたっては,授業担当者ごとの指導方法の差違,学生の学習意欲不足,授業内容と効果の評価不足など様々な課題がある.このたび広島大学図書館では,情報メディア教育研究センターとの連携授業 「情報活用基礎」 に WebCT を用いた e-Learning を導入し,いくつかの課題解決を試みたので報告する.Library tutorials have been facing a variety of challenges such as different instruction styles and skills of each librarian who takes a role of instructor for classes, needs for students' motivation about the topic and a lack of good evaluation of the tutorial contents and its efficacy. This is a report of an attempt to get over some challenges by employment of e-Learning tool, WebCT, to library literacy classes in the subject of information literacy "Elements of Information Literacy", conducted by Hiroshima University Library in cooperation with Information Media Center of Hiroshima University

    Functional analysis of lysosome during mouse preimplantation

    No full text
    Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos
    corecore