328 research outputs found

    Contraceptive Use and Method Preference among Women in Soweto, South Africa: The Influence of Expanding Access to HIV Care and Treatment Services

    Get PDF
    Objective: Preventing unintended pregnancy among HIV-positive women constitutes a critical and cost-effective approach to primary prevention of mother-to-child transmission of HIV and is a global public health priority for addressing the desperate state of maternal and child health in HIV hyper-endemic settings. We sought to investigate whether the prevalence of contraceptive use and method preferences varied by HIV status and receipt of highly active antiretroviral therapy (HAART) among women in Soweto, South Africa. Methods: We used survey data from 563 sexually active, non-pregnant women (18–44 years) recruited from the Perinatal HIV Research Unit in Soweto (May–December, 2007); 171 women were HIV-positive and receiving HAART (median duration of use = 31 months; IQR = 28, 33), 178 were HIV-positive and HAART-naïve, and 214 were HIV-negative. Medical record review was conducted to confirm HIV status and clinical variables. Logistic regression models estimated adjusted associations between HIV status, receipt of HAART, and contraceptive use. Results: Overall, 78 % of women reported using contraception, with significant variation by HIV status: 86 % of HAART users, 82 % of HAART-naïve women, and 69 % of HIV-negative women (p,0.0001). In adjusted models, compared with HIVnegativ

    Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis

    Get PDF
    BACKGROUND: Cigarette smoke disrupts the protective barrier established by the airway epithelium through direct damage to the epithelial cells, leading to cell death. Since the morphology of the airway epithelium of smokers does not typically demonstrate necrosis, the most likely mechanism for epithelial cell death in response to cigarette smoke is apoptosis. We hypothesized that cigarette smoke directly up-regulates expression of apoptotic genes, which could play a role in airway epithelial apoptosis. METHODS: Microarray analysis of airway epithelium obtained by bronchoscopy on matched cohorts of 13 phenotypically normal smokers and 9 non-smokers was used to identify specific genes modulated by smoking that were associated with apoptosis. Among the up-regulated apoptotic genes was pirin (3.1-fold, p < 0.002), an iron-binding nuclear protein and transcription cofactor. In vitro studies using human bronchial cells exposed to cigarette smoke extract (CSE) and an adenovirus vector encoding the pirin cDNA (AdPirin) were performed to test the direct effect of cigarette smoke on pirin expression and the effect of pirin expression on apoptosis. RESULTS: Quantitative TaqMan RT-PCR confirmed a 2-fold increase in pirin expression in the airway epithelium of smokers compared to non-smokers (p < 0.02). CSE applied to primary human bronchial epithelial cell cultures demonstrated that pirin mRNA levels increase in a time-and concentration-dependent manner (p < 0.03, all conditions compared to controls). Overexpression of pirin, using the vector AdPirin, in human bronchial epithelial cells was associated with an increase in the number of apoptotic cells assessed by both TUNEL assay (5-fold, p < 0.01) and ELISA for cytoplasmic nucleosomes (19.3-fold, p < 0.01) compared to control adenovirus vector. CONCLUSION: These observations suggest that up-regulation of pirin may represent one mechanism by which cigarette smoke induces apoptosis in the airway epithelium, an observation that has implications for the pathogenesis of cigarette smoke-induced diseases

    Novel autoantigens immunogenic in COPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is a respiratory inflammatory condition with autoimmune features including IgG autoantibodies. In this study we analyze the complexity of the autoantibody response and reveal the nature of the antigens that are recognized by autoantibodies in COPD patients.</p> <p>Methods</p> <p>An array of 1827 gridded immunogenic peptide clones was established and screened with 17 sera of COPD patients and 60 healthy controls. Protein arrays were evaluated both by visual inspection and a recently developed computer aided image analysis technique. By this computer aided image analysis technique we computed the intensity values for each peptide clone and each serum and calculated the area under the receiver operator characteristics curve (AUC) for each clone and the separation COPD sera versus control sera.</p> <p>Results</p> <p>By visual evaluation we detected 381 peptide clones that reacted with autoantibodies of COPD patients including 17 clones that reacted with more than 60% of the COPD sera and seven clones that reacted with more than 90% of the COPD sera. The comparison of COPD sera and controls by the automated image analysis system identified 212 peptide clones with informative AUC values. By <it>in silico </it>sequence analysis we found an enrichment of sequence motives previously associated with immunogenicity.</p> <p>Conclusion</p> <p>The identification of a rather complex humoral immune response in COPD patients supports the idea of COPD as a disease with strong autoimmune features. The identification of novel immunogenic antigens is a first step towards a better understanding of the autoimmune component of COPD.</p

    Genome-Wide Analysis of Subependymomas Shows Underlying Chromosomal Copy Number Changes Involving Chromosomes 6, 7, 8 and 14 in a Proportion of Cases

    Get PDF
    Subependymomas (SE) are slow-growing brain tumors that tend to occur within the ventricles of middle-aged and elderly adults. The World Health Organization classifies these tumors within the ependymoma group. Previous limited analysis of this tumor type had not revealed significant underlying cytogenetic abnormalities

    The effects of an enhanced simulation programme on medical students' confidence responding to clinical deterioration

    Get PDF
    BACKGROUND: Clinical deterioration in adult hospital patients is an identified issue in healthcare practice globally. Teaching medical students to recognise and respond to the deteriorating patient is crucial if we are to address the issue in an effective way. The aim of this study was to evaluate the effects of an enhanced simulation exercise known as RADAR (Recognising Acute Deterioration: Active Response), on medical students’ confidence. METHODS: A questionnaire survey was conducted; the instrument contained three sections. Section 1 focused on students’ perceptions of the learning experience; section 2 investigated confidence. Both sections employed Likert-type scales. A third section invited open responses. Questionnaires were distributed to a cohort of third-year medical students (n = 158) in the North East of Scotland 130 (82 %) were returned for analysis, employing IBM SPSS v18 and ANOVA techniques. RESULTS: Students’ responses pointed to many benefits of the sessions. In the first section, students responded positively to the educational underpinning of the sessions, with all scores above 4.00 on a 5-point scale. There were clear learning outcomes; the sessions were active and engaging for students with an appropriate level of challenge and stress; they helped to integrate theory and practice; and effective feedback on their performance allowed students to reflect and learn from the experience. In section 2, the key finding was that scores for students’ confidence to recognise deterioration increased significantly (p. < .001) as a result of the sessions. Effect sizes (Eta(2)) were high, (0.68–0.75). In the open-ended questions, students pointed to many benefits of the RADAR course, including the opportunity to employ learned procedures in realistic scenarios. CONCLUSIONS: The use of this enhanced form of simulation with simulated patients and the judicious use of moulage is an effective method of increasing realism for medical students. Importantly, it gives them greater confidence in recognising and responding to clinical deterioration in adult patients. We recommend the use of RADAR as a safe and cost-effective approach in the area of clinical deterioration and suggest that there is a need to investigate its use with different patient groups

    SHCal20 Southern Hemisphere Calibration, 0-55,000 Years cal BP

    Full text link
    Early researchers of radiocarbon levels in Southern Hemisphere tree rings identified a variable North-South hemispheric offset, necessitating construction of a separate radiocarbon calibration curve for the South. We present here SHCal20, a revised calibration curve from 0-55,000 cal BP, based upon SHCal13 and fortified by the addition of 14 new tree-ring data sets in the 2140-0, 3520-3453, 3608-3590 and 13,140-11,375 cal BP time intervals. We detail the statistical approaches used for curve construction and present recommendations for the use of the Northern Hemisphere curve (IntCal20), the Southern Hemisphere curve (SHCal20) and suggest where application of an equal mixture of the curves might be more appropriate. Using our Bayesian spline with errors-in-variables methodology, and based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data, we estimate the mean Southern Hemisphere offset to be 36 ± 27 C yrs older

    Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype

    Get PDF
    Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM. Methods: To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility. Results: Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction. Conclusions: Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD

    When to Start Antiretroviral Therapy

    Get PDF
    The question of when to start combination antiretroviral therapy for treatment-naïve patients has always been controversial. This is particularly true in the current era, with major guidelines recommending very different treatment strategies. Despite a lack of clarity regarding the optimal time to begin therapy, there has been a recent shift toward earlier initiation. This more aggressive approach is driven by several observations. First, effective viral suppression with therapy can prevent non-AIDS-related morbidity and mortality. Second, therapy can prevent irreversible harm to the human immune system. Third, therapy may prevent transmission of HIV to others, and thus have a potential public health benefit. For patients who are motivated and willing to initiate early treatment, the collective benefits of early therapy may outweigh the well-documented risks of antiretroviral medications

    Disparate oxidant gene expression of airway epithelium compared to alveolar macrophages in smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The small airway epithelium and alveolar macrophages are exposed to oxidants in cigarette smoke leading to epithelial dysfunction and macrophage activation. In this context, we asked: what is the transcriptome of oxidant-related genes in small airway epithelium and alveolar macrophages, and does their response differ substantially to inhaled cigarette smoke?</p> <p>Methods</p> <p>Using microarray analysis, with TaqMan RT-PCR confirmation, we assessed oxidant-related gene expression in small airway epithelium and alveolar macrophages from the same healthy nonsmoker and smoker individuals.</p> <p>Results</p> <p>Of 155 genes surveyed, 87 (56%) were expressed in both cell populations in nonsmokers, with higher expression in alveolar macrophages (43%) compared to airway epithelium (24%). In smokers, there were 15 genes (10%) up-regulated and 7 genes (5%) down-regulated in airway epithelium, but only 3 (2%) up-regulated and 2 (1%) down-regulated in alveolar macrophages. Pathway analysis of airway epithelium showed oxidant pathways dominated, but in alveolar macrophages immune pathways dominated.</p> <p>Conclusion</p> <p>Thus, the response of different cell-types with an identical genome exposed to the same stress of smoking is different; responses of alveolar macrophages are more subdued than those of airway epithelium. These findings are consistent with the observation that, while the small airway epithelium is vulnerable, alveolar macrophages are not "diseased" in response to smoking.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID: NCT00224185 and NCT00224198</p
    corecore