220 research outputs found

    Solid-earth structure and dynamics approached by the intelligent measurement analysis

    Get PDF
    令和4年度 Conductivity Anomaly研究会日時:令和4年12月26日(月)09:25-18:30, 12月27日(火)09:00-16:30場所:京都大学防災研究所連携研究棟3階301号室およびZoo

    Progressive evolution of whole-rock composition during metamorphism revealed by multivariate statistical analyses

    Get PDF
    The geochemical evolution of metamorphic rocks during subduction‐related metamorphism is described on the basis of multivariate statistical analyses. The studied data set comprises a series of mapped metamorphic rocks collected from the Sanbagawa metamorphic belt in central Shikoku, Japan, where metamorphic conditions range from the pumpellyite–actinolite to epidote–amphibolite facies. Recent progress in computational and information science provides a number of algorithms capable of revealing structures in large data sets. This study applies k‐means cluster analysis (KCA) and non‐negative matrix factorization (NMF) to a series of metapelites, which is the main lithotype of the Sanbagawa metamorphic belt. KCA describes the structures of the high‐dimensional data, while NMF provides end‐member decomposition which can be useful for evaluating the spatial distribution of continuous compositional trends. The analysed data set, derived from previously published work, contains 296 samples for which 14 elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, Rb, Sr, Zr and Ba) have been analysed. The KCA and NMF analyses indicate five clusters and four end‐members, respectively, successfully explaining compositional variations within the data set. KCA indicates that the chemical compositions of metapelite samples from the western (Besshi) part of the sampled area differ significantly from those in the east (Asemigawa). In the west, clusters show a good correlation with the metamorphic grade. With increasing metamorphic grade, there are decreases in SiO₂ and Na₂O and increases in other components. However, the compositional change with metamorphic grade is less obvious in the eastern area. End‐member decomposition using NMF revealed that the evolutional change of whole‐rock composition, as correlated with metamorphic grade, approximates a stoichiometric increase of a garnet‐like component in the whole‐rock composition, possibly due to the precipitation of garnet and effusion of other components during progressive dehydration. Thermodynamic modelling of the evolution of the whole‐rock composition yielded the following results: (1) the whole‐rock composition at lower metamorphic grade favours the preferential crystallization of garnet under the conditions of the garnet zone, with biotite becoming stable together with garnet in higher‐grade rock compositions under the same P–T conditions; (2) with higher‐grade whole‐rock compositions, more H₂O is retained. These results provide insight into the mechanism suppressing dehydration under high‐P metamorphic conditions. This mechanism should be considered in forward modelling of the fluid cycle in subduction zones, although such a quantitative model has yet to be developed

    Discontinuous boundaries of slow slip events beneath the Bungo Channel, southwest Japan

    Get PDF
    The down-dip limit of the seismogenic zone and up-dip and down-dip limits of the deep low-frequency tremors in southwest Japan are clearly imaged by the hypocentre distribution. Previous studies using smooth constraints in inversion analyses estimated that long-term slow slip events (L-SSEs) beneath the Bungo Channel are distributed smoothly from the down-dip part of the seismogenic zone to the up-dip part of the tremors. Here, we use fused regularisation, a type of sparse modelling suitable for detecting discontinuous changes in the model parameters to estimate the slip distribution of L-SSEs. The largest slip abruptly becomes zero at the down-dip limit of the seismogenic zone, is immediately reduced to half at the up-dip limit of the tremors, and becomes zero near its down-dip limit. Such correspondences imply that some thresholds exist in the generation processes for both tremors and SSEs. Hence, geodetic data inversion with sparse modelling can detect such high resolution in the slip distribution

    Solid-earth structure and dynamics approached by the intelligent measurement analysis

    No full text
    令和4年度 Conductivity Anomaly研究会日時:令和4年12月26日(月)09:25-18:30, 12月27日(火)09:00-16:30場所:京都大学防災研究所連携研究棟3階301号室およびZoo

    データ駆動地球科学の進展

    No full text
    corecore