2,343 research outputs found

    Z radiation off stops at a linear collider

    Get PDF
    We calculate e+e- --> stop/stop/Z at a linear collider. For large splitting between the two stops the cross-section is sensitive to the value of m(stop2) when this particle is too heavy to be directly produced. The results are compared to e+e- --> stop/stop/h.Comment: 19 pages, 8 figure

    Comprehensive study of the critical behavior in the diluted antiferromagnet in a field

    Get PDF
    We study the critical behavior of the Diluted Antiferromagnet in a Field with the Tethered Monte Carlo formalism. We compute the critical exponents (including the elusive hyperscaling violations exponent θ\theta). Our results provide a comprehensive description of the phase transition and clarify the inconsistencies between previous experimental and theoretical work. To do so, our method addresses the usual problems of numerical work (large tunneling barriers and self-averaging violations).Comment: 4 pages, 2 figure

    Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks

    Get PDF
    The parameters of the Minimal Supersymmetric Standard Model appear to require uncomfortably precise adjustment in order to reconcile the electroweak symmetry breaking scale with the lower mass limits on a neutral Higgs scalar boson. This problem can be significantly ameliorated in models with a running gluino mass parameter that is smaller than the wino mass near the scale of unification of gauge couplings. A "compressed" superpartner mass spectrum results; compared to models with unified gaugino masses, the ratios of the squark and gluino masses to the lightest superpartner mass are reduced. I argue that in this scenario the annihilation of bino-like neutralino pairs to top-antitop quark pairs through top squark exchange can most naturally play the crucial role in ensuring that the thermal relic dark matter density is not too large, with only a small role played by coannihilations. The lightest superpartner mass must then exceed the top quark mass, and the lighter top squark cannot decay to a top quark. These conditions have important implications for collider searches.Comment: 18 page

    Critical dynamics and effective exponents of magnets with extended impurities

    Full text link
    We investigate the asymptotic and effective static and dynamic critical behavior of (d=3)-dimensional magnets with quenched extended defects, correlated in ϵd\epsilon_d dimensions (which can be considered as the dimensionality of the defects) and randomly distributed in the remaining dϵdd-\epsilon_d dimensions. The field-theoretical renormalization group perturbative expansions being evaluated naively do not allow for the reliable numerical data. We apply the Chisholm-Borel resummation technique to restore convergence of the two-loop expansions and report the numerical values of the asymptotic critical exponents for the model A dynamics. We discuss different scenarios for static and dynamic effective critical behavior and give values for corresponding non-universal exponents.Comment: 12 pages, 6 figure

    Constraints on Supersymmetry from Relic Density compared with future Higgs Searches at the LHC

    Get PDF
    Among the theories beyond the Standard Model (SM) of particle physics Supersymmetry (SUSY) provides an excellent dark matter (DM) candidate, the neutralino. One clear prediction of cosmology is the annihilation cross section of DM particles, assuming them to be a thermal relic from the early universe. In most of the parameter space of Supersymmetry the annihilation cross section is too small compared with the prediction of cosmology. However, for large values of the tan beta parameter the annihilation through s-channel pseudoscalar Higgs exchange yields the correct relic density in practically the whole range of possible SUSY masses up to the few TeV range. The required values of tan beta are typically around 50, i.e. of the order of top and bottom mass ratio, which happens to be also the range allowing for Yukawa unification in a Grand Unified Theory with gauge coupling unification. For such large values of tan beta the associated production of the heavier Higgses, which is enhanced by tan beta squared, becomes three orders of magnitude larger than the production of a simlar SM-like Higgs and could be observable as one of the first hints of new physics at the LHC.Comment: 12 pages, 5 figures, Published version in Phys. Lett. B with updated references and minor correction

    Weak first order transition in the three-dimensional site-diluted Ising antiferromagnet in a magnetic field

    Get PDF
    We perform intensive numerical simulations of the three-dimensional site-diluted Ising antiferromagnet in a magnetic field at high values of the external applied field. Even if data for small lattice sizes are compatible with second-order criticality, the critical behavior of the system shows a crossover from second-order to first-order behavior for large system sizes, where signals of latent heat appear. We propose "apparent" critical exponents for the dependence of some observables with the lattice size for a generic (disordered) first-order phase transition.Comment: Final version, accepted for publicatio

    Monte Carlo Simulation of a Random-Field Ising Antiferromagnet

    Full text link
    Phase transitions in the three-dimensional diluted Ising antiferromagnet in an applied magnetic field are analyzed numerically. It is found that random magnetic field in a system with spin concentration below a certain threshold induces a crossover from second-order phase transition to first-order transition to a new phase characterized by a spin-glass ground state and metastable energy states at finite temperatures.Comment: 10 pages, 11 figure

    Supersymmetry Without Prejudice at the LHC

    Full text link
    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (s=14\sqrt s=14 TeV, 1 fb1^{-1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of 71\sim 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 7171k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S>5S>5 in at least one of these 11 analyses assuming a 50\% systematic error on the SM background. If this systematic error can be reduced to only 20\% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.Comment: 69 pages, 40 figures, Discussion adde

    Tricritical Points in the Sherrington-Kirkpatrick Model in the Presence of Discrete Random Fields

    Full text link
    The infinite-range-interaction Ising spin glass is considered in the presence of an external random magnetic field following a trimodal (three-peak) distribution. The model is studied through the replica method and phase diagrams are obtained within the replica-symmetry approximation. It is shown that the border of the ferromagnetic phase may present first-order phase transitions, as well as tricritical points at finite temperatures. Analogous to what happens for the Ising ferromagnet under a trimodal random field, it is verified that the first-order phase transitions are directly related to the dilution in the fields (represented by p0p_{0}). The ferromagnetic boundary at zero temperature also exhibits an interesting behavior: for 0<p0<p00.308560<p_{0}<p_{0}^{*} \approx 0.30856, a single tricritical point occurs, whereas if p0>p0p_{0}>p_{0}^{*} the critical frontier is completely continuous; however, for p0=p0p_{0}=p_{0}^{*}, a fourth-order critical point appears. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified; in particular, the Almeida-Thouless line in the plane field versus temperature is shown to depend on the weight p0p_{0}.Comment: 23pages, 7 ps figure
    corecore