16 research outputs found
Acaricidal Activity of Petroleum Ether Extract of Leaves of Tetrastigma leucostaphylum
The acaricidal activity of the petroleum ether extract of leaves of Tetrastigma leucostaphylum (Dennst.) Alston (family: Vitaceae) against Rhipicephalus (Boophilus) annulatus was assessed using adult immersion test (AIT). The per cent of adult mortality, inhibition of fecundity, and blocking of hatching of eggs were studied at different concentrations. The extract at 10% concentration showed 88.96% inhibition of fecundity, 58.32% of adult tick mortality, and 50% inhibition of hatching. Peak mortality rate was observed after day 5 of treatment. Mortality of engorged female ticks, inhibition of fecundity, and hatching of eggs were concentration dependent. The LC50 value of the extract against R. (B.) annulatus was 10.46%. The HPTLC profiling of the petroleum ether extract revealed the presence of at least seven polyvalent components. In the petroleum ether extract, nicotine was identified as one of the components up to a concentration of 5.4%. However, nicotine did not reveal any acaricidal activity up to 20000 ppm (2%). Coconut oil, used as diluent for dissolving the extract, did not reveal any acaricidal effects. The results are indicative of the involvement of synergistic or additive action of the bioactive components in the tick mortality and inhibition of the oviposition
Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis
A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for seedling-stage phosphorus (P) responses by growing them in P sufficient (Psuf) and P deficient (Pdef) treatments. Majority of the genotypes showed adaptive responses to low P condition. Based on phenotype behaviour using the best linear unbiased predictors for each trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive types. Based on the overall phenotype performance under Pdef, 10 genotypes were identified as low P tolerants. The low P tolerant genotypes were characterised by increased shoot and root length and increased root hair induction with longer root hairs under Pdef, than under Psuf. Association mapping of P response traits using mixed linear models revealed four quantitative trait loci (QTLs). Two QTLs (qLRDW.1 and qLRDW.2) for low P response affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH). The QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1) and root length (qHRL.1). Putative associations of these QTLs over the syntenous regions on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and pectin methylesterase inhibitor (PMEI) genes. This is the first report of the extent of phenotypic variability for P response in finger millet genotypes during seedling-stage, along with the QTLs and putative candidate genes associated with P starvation tolerance
Finger Millet [Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence
The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa
Table_2_Finger Millet [Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence.DOCX
<p>The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa.</p
Table_3_Finger Millet [Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence.DOCX
<p>The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa.</p
Table_1_Finger Millet [Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence.DOCX
<p>The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa.</p
The details of biochemical pathways of putative candidate genes linked to the P starvation response in finger millet, based on the KEGG pathway database search.
<p>The details of biochemical pathways of putative candidate genes linked to the P starvation response in finger millet, based on the KEGG pathway database search.</p
Genotypes having low P tolerance responses with different combinations of traits for positive responses for all the traits.
<p>Genotypes having low P tolerance responses with different combinations of traits for positive responses for all the traits.</p
Identification of optimum population structure using Evanno’s method.
<p>The Δ<i>K</i> values showed the highest peak corresponding to <i>K</i> = 3.</p
Pearson’s correlations among the predicted trait means under P<sub><i>suf</i></sub> (lower diagonal) and P<sub><i>def</i></sub> (upper diagonal) conditions.
<p>The diagonal values (bold) are the correlations between the P levels.</p