8 research outputs found

    Identification of Elaiophylin Skeletal Variants from the Indonesian <i>Streptomyces</i> sp. ICBB 9297

    No full text
    Four new elaiophylin macrolides (<b>1</b>–<b>4</b>), together with five known elaiophylins (<b>5</b>–<b>9</b>), have been isolated from cultures of the Indonesian soil bacterium <i>Streptomyces</i> sp. ICBB 9297. The new compounds have macrocyclic skeletons distinct from those of the known dimeric elaiophylins in that one or both of the polyketide chains contain(s) an additional pendant methyl group. Further investigations revealed that <b>1</b> and <b>2</b> were derived from <b>3</b> and <b>4</b>, respectively, during isolation processes. Compounds <b>1</b>–<b>3</b> showed comparable antibacterial activity to elaiophylin against <i>Staphylococcus aureus</i>. However, interestingly, only compounds <b>1</b> and <b>3</b>, which contain a pendant methyl group at C-2, showed activity against <i>Mycobacterium smegmatis</i>, whereas compound <b>2</b>, which has two pendant methyl groups at C-2 and C-2′, and the known elaiophylin analogues (<b>5</b>–<b>7</b>), which lack pendant methyl groups at C-2 and/or C-2′, showed no activity. The production of <b>3</b> and <b>4</b> in strain ICBB 9297 indicates that one of the acyltransferase (AT) domains in the elaiophylin polyketide synthases (PKSs) can recruit both malonyl-CoA and methylmalonyl-CoA as substrates. Bioinformatic analysis of the AT domains of the elaiophylin PKSs revealed that the ela_AT7 domain contains atypical active site amino acid residues, distinct from those conserved in malonyl-CoA- or methylmalonyl-CoA-specific ATs

    Structural and Functional Characterization of MppR, an Enduracididine Biosynthetic Enzyme from <i>Streptomyces hygroscopicus</i>: Functional Diversity in the Acetoacetate Decarboxylase-like Superfamily

    No full text
    The nonproteinogenic amino acid enduracididine is a critical component of the mannopeptimycins, cyclic glycopeptide antibiotics with activity against drug-resistant pathogens, including methicillin-resistant <i>Staphylococcus aureus</i>. Enduracididine is produced in <i>Streptomyces hygroscopicus</i> by three enzymes, MppP, MppQ, and MppR. On the basis of primary sequence analysis, MppP and MppQ are pyridoxal 5′-phosphate-dependent aminotransferases; MppR shares a low, but significant, level of sequence identity with acetoacetate decarboxylase. The exact reactions catalyzed by each enzyme and the intermediates involved in the route to enduracididine are currently unknown. Herein, we present biochemical and structural characterization of MppR that demonstrates a catalytic activity for this enzyme and provides clues about its role in enduracididine biosynthesis. Bioinformatic analysis shows that MppR belongs to a previously uncharacterized family within the acetoacetate decarboxylase-like superfamily (ADCSF) and suggests that MppR-like enzymes may catalyze reactions diverging from the well-characterized, prototypical ADCSF decarboxylase activity. MppR shares a high degree of structural similarity with acetoacetate decarboxylase, though the respective quaternary structures differ markedly and structural differences in the active site explain the observed loss of decarboxylase activity. The crystal structure of MppR in the presence of a mixture of pyruvate and 4-imidazolecarboxaldehyde shows that MppR catalyzes the aldol condensation of these compounds and subsequent dehydration. Surprisingly, the structure of MppR in the presence of “4-hydroxy-2-ketoarginine” shows the correct 4<i>R</i> enantiomer of “2-ketoenduracididine” bound to the enzyme. These data, together with bioinformatic analysis of MppR homologues, identify a novel family within the acetoacetate decarboxylase-like superfamily with divergent active site structure and, consequently, biochemical function

    Structural and Functional Characterization of MppR, an Enduracididine Biosynthetic Enzyme from <i>Streptomyces hygroscopicus</i>: Functional Diversity in the Acetoacetate Decarboxylase-like Superfamily

    No full text
    The nonproteinogenic amino acid enduracididine is a critical component of the mannopeptimycins, cyclic glycopeptide antibiotics with activity against drug-resistant pathogens, including methicillin-resistant <i>Staphylococcus aureus</i>. Enduracididine is produced in <i>Streptomyces hygroscopicus</i> by three enzymes, MppP, MppQ, and MppR. On the basis of primary sequence analysis, MppP and MppQ are pyridoxal 5′-phosphate-dependent aminotransferases; MppR shares a low, but significant, level of sequence identity with acetoacetate decarboxylase. The exact reactions catalyzed by each enzyme and the intermediates involved in the route to enduracididine are currently unknown. Herein, we present biochemical and structural characterization of MppR that demonstrates a catalytic activity for this enzyme and provides clues about its role in enduracididine biosynthesis. Bioinformatic analysis shows that MppR belongs to a previously uncharacterized family within the acetoacetate decarboxylase-like superfamily (ADCSF) and suggests that MppR-like enzymes may catalyze reactions diverging from the well-characterized, prototypical ADCSF decarboxylase activity. MppR shares a high degree of structural similarity with acetoacetate decarboxylase, though the respective quaternary structures differ markedly and structural differences in the active site explain the observed loss of decarboxylase activity. The crystal structure of MppR in the presence of a mixture of pyruvate and 4-imidazolecarboxaldehyde shows that MppR catalyzes the aldol condensation of these compounds and subsequent dehydration. Surprisingly, the structure of MppR in the presence of “4-hydroxy-2-ketoarginine” shows the correct 4<i>R</i> enantiomer of “2-ketoenduracididine” bound to the enzyme. These data, together with bioinformatic analysis of MppR homologues, identify a novel family within the acetoacetate decarboxylase-like superfamily with divergent active site structure and, consequently, biochemical function

    Structural and Functional Characterization of MppR, an Enduracididine Biosynthetic Enzyme from <i>Streptomyces hygroscopicus</i>: Functional Diversity in the Acetoacetate Decarboxylase-like Superfamily

    No full text
    The nonproteinogenic amino acid enduracididine is a critical component of the mannopeptimycins, cyclic glycopeptide antibiotics with activity against drug-resistant pathogens, including methicillin-resistant <i>Staphylococcus aureus</i>. Enduracididine is produced in <i>Streptomyces hygroscopicus</i> by three enzymes, MppP, MppQ, and MppR. On the basis of primary sequence analysis, MppP and MppQ are pyridoxal 5′-phosphate-dependent aminotransferases; MppR shares a low, but significant, level of sequence identity with acetoacetate decarboxylase. The exact reactions catalyzed by each enzyme and the intermediates involved in the route to enduracididine are currently unknown. Herein, we present biochemical and structural characterization of MppR that demonstrates a catalytic activity for this enzyme and provides clues about its role in enduracididine biosynthesis. Bioinformatic analysis shows that MppR belongs to a previously uncharacterized family within the acetoacetate decarboxylase-like superfamily (ADCSF) and suggests that MppR-like enzymes may catalyze reactions diverging from the well-characterized, prototypical ADCSF decarboxylase activity. MppR shares a high degree of structural similarity with acetoacetate decarboxylase, though the respective quaternary structures differ markedly and structural differences in the active site explain the observed loss of decarboxylase activity. The crystal structure of MppR in the presence of a mixture of pyruvate and 4-imidazolecarboxaldehyde shows that MppR catalyzes the aldol condensation of these compounds and subsequent dehydration. Surprisingly, the structure of MppR in the presence of “4-hydroxy-2-ketoarginine” shows the correct 4<i>R</i> enantiomer of “2-ketoenduracididine” bound to the enzyme. These data, together with bioinformatic analysis of MppR homologues, identify a novel family within the acetoacetate decarboxylase-like superfamily with divergent active site structure and, consequently, biochemical function

    Structural and Functional Characterization of MppR, an Enduracididine Biosynthetic Enzyme from <i>Streptomyces hygroscopicus</i>: Functional Diversity in the Acetoacetate Decarboxylase-like Superfamily

    No full text
    The nonproteinogenic amino acid enduracididine is a critical component of the mannopeptimycins, cyclic glycopeptide antibiotics with activity against drug-resistant pathogens, including methicillin-resistant <i>Staphylococcus aureus</i>. Enduracididine is produced in <i>Streptomyces hygroscopicus</i> by three enzymes, MppP, MppQ, and MppR. On the basis of primary sequence analysis, MppP and MppQ are pyridoxal 5′-phosphate-dependent aminotransferases; MppR shares a low, but significant, level of sequence identity with acetoacetate decarboxylase. The exact reactions catalyzed by each enzyme and the intermediates involved in the route to enduracididine are currently unknown. Herein, we present biochemical and structural characterization of MppR that demonstrates a catalytic activity for this enzyme and provides clues about its role in enduracididine biosynthesis. Bioinformatic analysis shows that MppR belongs to a previously uncharacterized family within the acetoacetate decarboxylase-like superfamily (ADCSF) and suggests that MppR-like enzymes may catalyze reactions diverging from the well-characterized, prototypical ADCSF decarboxylase activity. MppR shares a high degree of structural similarity with acetoacetate decarboxylase, though the respective quaternary structures differ markedly and structural differences in the active site explain the observed loss of decarboxylase activity. The crystal structure of MppR in the presence of a mixture of pyruvate and 4-imidazolecarboxaldehyde shows that MppR catalyzes the aldol condensation of these compounds and subsequent dehydration. Surprisingly, the structure of MppR in the presence of “4-hydroxy-2-ketoarginine” shows the correct 4<i>R</i> enantiomer of “2-ketoenduracididine” bound to the enzyme. These data, together with bioinformatic analysis of MppR homologues, identify a novel family within the acetoacetate decarboxylase-like superfamily with divergent active site structure and, consequently, biochemical function

    Structural and Functional Characterization of MppR, an Enduracididine Biosynthetic Enzyme from <i>Streptomyces hygroscopicus</i>: Functional Diversity in the Acetoacetate Decarboxylase-like Superfamily

    No full text
    The nonproteinogenic amino acid enduracididine is a critical component of the mannopeptimycins, cyclic glycopeptide antibiotics with activity against drug-resistant pathogens, including methicillin-resistant <i>Staphylococcus aureus</i>. Enduracididine is produced in <i>Streptomyces hygroscopicus</i> by three enzymes, MppP, MppQ, and MppR. On the basis of primary sequence analysis, MppP and MppQ are pyridoxal 5′-phosphate-dependent aminotransferases; MppR shares a low, but significant, level of sequence identity with acetoacetate decarboxylase. The exact reactions catalyzed by each enzyme and the intermediates involved in the route to enduracididine are currently unknown. Herein, we present biochemical and structural characterization of MppR that demonstrates a catalytic activity for this enzyme and provides clues about its role in enduracididine biosynthesis. Bioinformatic analysis shows that MppR belongs to a previously uncharacterized family within the acetoacetate decarboxylase-like superfamily (ADCSF) and suggests that MppR-like enzymes may catalyze reactions diverging from the well-characterized, prototypical ADCSF decarboxylase activity. MppR shares a high degree of structural similarity with acetoacetate decarboxylase, though the respective quaternary structures differ markedly and structural differences in the active site explain the observed loss of decarboxylase activity. The crystal structure of MppR in the presence of a mixture of pyruvate and 4-imidazolecarboxaldehyde shows that MppR catalyzes the aldol condensation of these compounds and subsequent dehydration. Surprisingly, the structure of MppR in the presence of “4-hydroxy-2-ketoarginine” shows the correct 4<i>R</i> enantiomer of “2-ketoenduracididine” bound to the enzyme. These data, together with bioinformatic analysis of MppR homologues, identify a novel family within the acetoacetate decarboxylase-like superfamily with divergent active site structure and, consequently, biochemical function

    Structural and Functional Characterization of MppR, an Enduracididine Biosynthetic Enzyme from <i>Streptomyces hygroscopicus</i>: Functional Diversity in the Acetoacetate Decarboxylase-like Superfamily

    No full text
    The nonproteinogenic amino acid enduracididine is a critical component of the mannopeptimycins, cyclic glycopeptide antibiotics with activity against drug-resistant pathogens, including methicillin-resistant <i>Staphylococcus aureus</i>. Enduracididine is produced in <i>Streptomyces hygroscopicus</i> by three enzymes, MppP, MppQ, and MppR. On the basis of primary sequence analysis, MppP and MppQ are pyridoxal 5′-phosphate-dependent aminotransferases; MppR shares a low, but significant, level of sequence identity with acetoacetate decarboxylase. The exact reactions catalyzed by each enzyme and the intermediates involved in the route to enduracididine are currently unknown. Herein, we present biochemical and structural characterization of MppR that demonstrates a catalytic activity for this enzyme and provides clues about its role in enduracididine biosynthesis. Bioinformatic analysis shows that MppR belongs to a previously uncharacterized family within the acetoacetate decarboxylase-like superfamily (ADCSF) and suggests that MppR-like enzymes may catalyze reactions diverging from the well-characterized, prototypical ADCSF decarboxylase activity. MppR shares a high degree of structural similarity with acetoacetate decarboxylase, though the respective quaternary structures differ markedly and structural differences in the active site explain the observed loss of decarboxylase activity. The crystal structure of MppR in the presence of a mixture of pyruvate and 4-imidazolecarboxaldehyde shows that MppR catalyzes the aldol condensation of these compounds and subsequent dehydration. Surprisingly, the structure of MppR in the presence of “4-hydroxy-2-ketoarginine” shows the correct 4<i>R</i> enantiomer of “2-ketoenduracididine” bound to the enzyme. These data, together with bioinformatic analysis of MppR homologues, identify a novel family within the acetoacetate decarboxylase-like superfamily with divergent active site structure and, consequently, biochemical function

    Succinylated Apoptolidins from <i>Amycolatopsis</i> sp. ICBB 8242

    No full text
    Two new apoptolidins, 2′-<i>O</i>-succinyl-apoptolidin A (<b>11</b>) and 3′-<i>O</i>-succinyl-apoptolidin A (<b>12</b>), were isolated from the culture broth of an Indonesian <i>Amycolatopsis</i> sp. ICBB 8242. These compounds inhibit the proliferation and viability of human H292 and HeLa cells. However, in contrast to apoptolidin A (<b>1</b>), they do not inhibit cellular respiration in H292 cells. It is proposed that apoptolidins are produced and secreted in their succinylated forms and <b>1</b> is the hydrolysis product of <b>11</b> and <b>12</b>
    corecore