3,362 research outputs found

    Penny-shaped crack in a fiber-reinforced matrix

    Get PDF
    Using a slender inclusion model developed earlier, the elastostatic interaction problem between a penny-shaped crack and elastic fibers in an elastic matrix is formulated. For a single set and for multiple sets of fibers oriented perpendicularly to the plane of the crack and distributed symmetrically on concentric circles, the problem was reduced to a system of singular integral equations. Techniques for the regularization and for the numerical solution of the system are outlined. For various fiber geometries numerical examples are given, and distribution of the stress intensity factor along the crack border was obtained. Sample results showing the distribution of the fiber stress and a measure of the fiber-matrix interface shear are also included

    On linear H∞ equalization of communication channels

    Get PDF
    As an alternative to existing techniques and algorithms, we investigate the merit of the H∞ approach to the linear equalization of communication channels. We first give the formulation of all causal H∞ equalizers using the results of and then look at the finite delay case. We compare the risk-sensitive H∞ equalizer with the MMSE equalizer with respect to both the average and the worst-case BER performances and illustrate the improvement due to the use of the H∞ equalizer

    Spontaneous decay of an excited atom placed near a rectangular plate

    Get PDF
    Using the Born expansion of the Green tensor, we consider the spontaneous decay rate of an excited atom placed in the vicinity of a rectangular plate. We discuss the limitations of the commonly used simplifying assumption that the plate extends to infinity in the lateral directions and examine the effects of the atomic dipole moment orientation, atomic position, and plate boundary and thickness on the atomic decay rate. In particular, it is shown that in the boundary region, the spontaneous decay rate can be strongly modified.Comment: 5 pages, 5 figure

    A Bayesian Perspective for Determinant Minimization Based Robust Structured Matrix Factorizatio

    Full text link
    We introduce a Bayesian perspective for the structured matrix factorization problem. The proposed framework provides a probabilistic interpretation for existing geometric methods based on determinant minimization. We model input data vectors as linear transformations of latent vectors drawn from a distribution uniform over a particular domain reflecting structural assumptions, such as the probability simplex in Nonnegative Matrix Factorization and polytopes in Polytopic Matrix Factorization. We represent the rows of the linear transformation matrix as vectors generated independently from a normal distribution whose covariance matrix is inverse Wishart distributed. We show that the corresponding maximum a posteriori estimation problem boils down to the robust determinant minimization approach for structured matrix factorization, providing insights about parameter selections and potential algorithmic extensions

    Qualitative features of periodic solutions of KdV

    Full text link
    In this paper we prove new qualitative features of solutions of KdV on the circle. The first result says that the Fourier coefficients of a solution of KdV in Sobolev space HN,N0H^N,\, N\geq 0, admit a WKB type expansion up to first order with strongly oscillating phase factors defined in terms of the KdV frequencies. The second result provides estimates for the approximation of such a solution by trigonometric polynomials of sufficiently large degree
    corecore