1,479 research outputs found
Electrocardiographic safety evaluation of dihydroartemisinin piperaquine in the treatment of uncomplicated falciparum malaria.
Dihydroartemisinin-piperaquine (DP) could become a leading fixed combination malaria treatment worldwide. Although there is accumulating evidence of efficacy and safety from clinical trials, data on cardiotoxicity are limited. In two randomized controlled trials in Thailand, 56 patients had ECGs performed before treatment, 4 hours after the first dose, and 4 hours after the last dose. The mean (95% CI) changes in QTc interval (Bazett's correction) were 2 (-6 to 9) ms and 14 (7 to 21) ms, respectively. These small changes on the third day of treatment are similar to those observed elsewhere in the convalescent phase following antimalarial treatment with drugs known to have no cardiac effects and are therefore likely to result from recovery from acute malaria and not the treatment given. At therapeutic doses, DP does not have clinically significant effects on the electrocardiogram
Intervention planning for Antibiotic Review Kit (ARK): a digital and behavioural intervention to safely review and reduce antibiotic prescriptions in acute and general medicine
Background
Hospital antimicrobial stewardship strategies, such as ‘Start Smart, Then Focus’ in the UK, balance the need for prompt, effective antibiotic treatment with the need to limit antibiotic overuse using ‘review and revise’. However, only a minority of review decisions are to stop antibiotics. Research suggests that this is due to both behavioural and organizational factors.
Objectives
To develop and optimize the Antibiotic Review Kit (ARK) intervention. ARK is a complex digital, organizational and behavioural intervention that supports implementation of ‘review and revise’ to help healthcare professionals safely stop unnecessary antibiotics.
Methods
A theory-, evidence- and person-based approach was used to develop and optimize ARK and its implementation. This was done through iterative stakeholder consultation and in-depth qualitative research with doctors, nurses and pharmacists in UK hospitals. Barriers to and facilitators of the intervention and its implementation, and ways to address them, were identified and then used to inform the intervention’s development.
Results
A key barrier to stopping antibiotics was reportedly a lack of information about the original prescriber’s rationale for and their degree of certainty about the need for antibiotics. An integral component of ARK was the development and optimization of a Decision Aid and its implementation to increase transparency around initial prescribing decisions.
Conclusions
The key output of this research is a digital and behavioural intervention targeting important barriers to stopping antibiotics at review (see http://bsac-vle.com/ark-the-antibiotic-review-kit/ and http://antibioticreviewkit.org.uk/). ARK will be evaluated in a feasibility study and, if successful, a stepped-wedge cluster-randomized controlled trial at acute hospitals across the NHS
Recommended from our members
The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples
Shotgun metagenomics is increasingly used to characterise microbial communities, particularly for the investigation of antimicrobial resistance (AMR) in different animal and environmental contexts. There are many different approaches for inferring the taxonomic composition and AMR gene content of complex community samples from shotgun metagenomic data, but there has been little work establishing the optimum sequencing depth, data processing and analysis methods for these samples. In this study we used shotgun metagenomics and sequencing of cultured isolates from the same samples to address these issues. We sampled three potential environmental AMR gene reservoirs (pig caeca, river sediment, effluent) and sequenced samples with shotgun metagenomics at high depth (~ 200 million reads per sample). Alongside this, we cultured single-colony isolates of Enterobacteriaceae from the same samples and used hybrid sequencing (short- and long-reads) to create high- quality assemblies for comparison to the metagenomic data. To automate data processing, we developed an open- source software pipeline, ‘ResPipe’
Symptoms and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Positivity in the General Population in the United Kingdom
BACKGROUND:
“Classic” symptoms (cough, fever, loss of taste/smell) prompt severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing in the United Kingdom. Studies have assessed the ability of different symptoms to identify infection, but few have compared symptoms over time (reflecting variants) and by vaccination status.
METHODS:
Using the COVID-19 Infection Survey, sampling households across the United Kingdom, we compared symptoms in PCR-positives vs PCR-negatives, evaluating sensitivity of combinations of 12 symptoms (percentage symptomatic PCR-positives reporting specific symptoms) and tests per case (TPC) (PCR-positives or PCR-negatives reporting specific symptoms/ PCR-positives reporting specific symptoms).
RESULTS:
Between April 2020 and August 2021, 27 869 SARS-CoV-2 PCR-positive episodes occurred in 27 692 participants (median 42 years), of whom 13 427 (48%) self-reported symptoms (“symptomatic PCR-positives”). The comparator comprised 3 806 692 test-negative visits (457 215 participants); 130 612 (3%) self-reported symptoms (“symptomatic PCR-negatives”). Symptom reporting in PCR-positives varied by age, sex, and ethnicity, and over time, reflecting changes in prevalence of viral variants, incidental changes (eg, seasonal pathogens (with sore throat increasing in PCR-positives and PCR-negatives from April 2021), schools reopening) and vaccination rollout. After May 2021 when Delta emerged, headache and fever substantially increased in PCR-positives, but not PCR-negatives. Sensitivity of symptom-based detection increased from 74% using “classic” symptoms, to 81% adding fatigue/weakness, and 90% including all 8 additional symptoms. However, this increased TPC from 4.6 to 5.3 to 8.7.
CONCLUSIONS:
Expanded symptom combinations may provide modest benefits for sensitivity of PCR-based case detection, but this will vary between settings and over time, and increases tests/case. Large-scale changes to targeted PCR-testing approaches require careful evaluation given substantial resource and infrastructure implications
Monitoring populations at increased risk for SARS-CoV-2 infection in the community using population-level demographic and behavioural surveillance
BACKGROUND: The COVID-19 pandemic is rapidly evolving, with emerging variants and fluctuating control policies. Real-time population screening and identification of groups in whom positivity is highest could help monitor spread and inform public health messaging and strategy. METHODS: To develop a real-time screening process, we included results from nose and throat swabs and questionnaires taken 19 July 2020-17 July 2021 in the UK's national COVID-19 Infection Survey. Fortnightly, associations between SARS-CoV-2 positivity and 60 demographic and behavioural characteristics were estimated using logistic regression models adjusted for potential confounders, considering multiple testing, collinearity, and reverse causality. FINDINGS: Of 4,091,537 RT-PCR results from 482,677 individuals, 29,903 (0·73%) were positive. As positivity rose September-November 2020, rates were independently higher in younger ages, and those living in Northern England, major urban conurbations, more deprived areas, and larger households. Rates were also higher in those returning from abroad, and working in healthcare or outside of home. When positivity peaked December 2020-January 2021 (Alpha), high positivity shifted to southern geographical regions. With national vaccine roll-out from December 2020, positivity reduced in vaccinated individuals. Associations attenuated as rates decreased between February-May 2021. Rising positivity rates in June-July 2021 (Delta) were independently higher in younger, male, and unvaccinated groups. Few factors were consistently associated with positivity. 25/45 (56%) confirmed associations would have been detected later using 28-day rather than 14-day periods. INTERPRETATION: Population-level demographic and behavioural surveillance can be a valuable tool in identifying the varying characteristics driving current SARS-CoV-2 positivity, allowing monitoring to inform public health policy. FUNDING: Department of Health and Social Care (UK), Welsh Government, Department of Health (on behalf of the Northern Ireland Government), Scottish Government, National Institute for Health Research
A genomic epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage
Enterobacterales from livestock are potentially important reservoirs for antimicrobial resistance (AMR) to pass through the food chain to humans, thereby increasing the AMR burden and affecting our ability to tackle infections. In this study 168 isolates from four genera of the order Enterobacterales, primarily Escherichia coli, were purified from livestock (cattle, pigs and sheep) faeces from 14 farms in the United Kingdom. Their genomes were resolved using long- and short-read sequencing to analyse AMR genes and their genetic context, as well as to explore the relationship between AMR burden and on-farm antimicrobial usage (AMU), in the three months prior to sampling. Although E. coli isolates were genomically diverse, phylogenetic analysis using a core-genome SNP tree indicated pig isolates to generally be distinct from sheep isolates, with cattle isolates being intermediates. Approximately 28 % of isolates harboured AMR genes, with the greatest proportion detected in pigs, followed by cattle then sheep; pig isolates also harboured the highest number of AMR genes per isolate. Although 90 % of sequenced isolates harboured diverse plasmids, only 11 % of plasmids (n=58 out of 522) identified contained AMR genes, with 91 % of AMR plasmids being from pig, 9 % from cattle and none from sheep isolates; these results indicated that pigs were a principle reservoir of AMR genes harboured by plasmids and likely to be involved in their horizontal transfer. Significant associations were observed between AMU (mg kg−1) and AMR. As both the total and the numbers of different antimicrobial classes used on-farm increased, the risk of multi-drug resistance (MDR) in isolates rose. However, even when AMU on pig farms was comparatively low, pig isolates had increased likelihood of being MDR; harbouring relatively more resistances than those from other livestock species. Therefore, our results indicate that AMR prevalence in livestock is not only influenced by recent AMU on-farm but also livestock-related factors, which can influence the AMR burden in these reservoirs and its plasmid mediated transmission
Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing
Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism’s phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens
Recommended from our members
Reducing expectations for antibiotics in primary care: a randomised experiment to test the response to fear-based messages about antimicrobial resistance
Background
To reduce inappropriate antibiotic use, public health campaigns often provide fear-based information about antimicrobial resistance (AMR). Meta-analyses have found that fear-based campaigns in other contexts are likely to be ineffective unless respondents feel confident they can carry out the recommended behaviour (‘self-efficacy’). This study aimed to test the likely impact of fear-based messages, with and without empowering self-efficacy elements, on patient consultations/antibiotic requests for influenza-like illnesses, using a randomised design.
Methods
We hypothesised that fear-based messages containing empowering information about self-management without antibiotics would be more effective than fear alone, particularly in a pre-specified subgroup with low AMR awareness. Four thousand respondents from an online panel, representative of UK adults, were randomised to receive three different messages about antibiotic use and AMR, designed to induce fear about AMR to varying degrees. Two messages (one ‘strong-fear’, one ‘mild-fear’) also contained empowering information regarding influenza-like symptoms being easily self-managed without antibiotics. The main outcome measures were self-reported effect of information on likelihood of visiting a doctor and requesting antibiotics, for influenza-like illness, analysed separately according to whether or not the AMR information was ‘very/somewhat new’ to respondents, pre-specified based on a previous (non-randomised) survey.
Results
The ‘fear-only’ message was ‘very/somewhat new’ to 285/1000 (28.5%) respondents, ‘mild-fear-plus-empowerment’ to 336/1500 (22.4%), and ‘strong-fear-plus-empowerment’ to 388/1500 (25.9%) (p = 0.002). Of those for whom the respective information was ‘very/somewhat new’, only those given the ‘strong-fear-plus-empowerment’ message said they would be less likely to request antibiotics if they visited a doctor for an influenza-like illness (p < 0.0001; 182/388 (46.9%) ‘much less likely’/‘less likely’, versus 116/336 (34.5%) with ‘mild-fear-plus-empowerment’ versus 85/285 (29.8%) with ‘fear-alone’). Those for whom the respective information was not ‘very/somewhat new’ said they would be less likely to request antibiotics for influenza-like illness (p < 0.0001) across all messages (interaction p < 0.0001 versus ‘very/somewhat new’ subgroup). The three messages had analogous self-reported effects on likelihood of visiting a doctor and in subgroups defined by believing antibiotics would ‘definitely/probably’ help an influenza-like illness. Results were reproduced in an independent randomised survey (additional 4000 adults).
Conclusions
Fear could be effective in public campaigns to reduce inappropriate antibiotic use, but should be combined with messages empowering patients to self-manage symptoms effectively without antibiotics
- …