15 research outputs found

    Acute effects of cinnamon on glucose response in vivo

    Get PDF

    A novel missense and a recurrent mutation in SLC2A10 gene of patients affected with arterial tortuosity syndrome

    No full text
    Arterial tortuosity syndrome is an autosomal recessive disorder characterized by severe tortuosity of greater and systemic arteries in affected individuals. In addition, patients display connective tissue features which include hyperextensible skin, hypermobility of joints and characteristic facial features. This syndrome is caused by mutation in SLC2A10 gene which encodes for the facilitative glucose transporter, GLUT10. We describe seven patients of two unrelated Saudi Arabian families who display tortuosity, dilatation and stenosis of arteries, pulmonary hypertension and other cardiovascular manifestations. These patients exhibit characteristic connective tissue phenotypes and distinctive facial features. In the single patient of Family 1, sequencing of the candidate gene, SLC2A10, identified a novel missense c.313C > T mutation encoding a p.Arg105Cys substitution in the second extracellular domain of GLUT10. The Arg105 in GLUT10 is highly conserved across species and its replacement with cysteine is predicted to be pathogenic. In the second family, all of the six affected individuals carry recurrent c.243C > G missense mutation encoding a p.Ser81Arg change in the third transmembrane domain of GLUT10. The present study suggests that there exists an intra- and inter-familial phenotypic variability in arterial tortuosity patients carrying identical or different mutations in SLC2A10 gene. While skin hyperextensibility, small joint hypermobility, and facial features are similarly expressed in these patients, there is a range of other phenotypes which include arterial tortuosity and associated complications, and abnormalities of other organs. © 2008 Elsevier Ireland Ltd. All rights reserved.link_to_subscribed_fulltex

    Methanolic Phoenix dactylifera L. Extract Ameliorates Cisplatin-Induced Hepatic Injury in Male Rats

    No full text
    This study investigated the ameliorative potential of methanolic date flesh extract (MDFE) against cisplatin-induced hepatic injury. Twenty male rats (weighing 180–200 g) were allocated into four groups: control; date flesh (DF) group (oral 600 mg/kg MDFE for 21 days); Cis group (7.5 mg/kg i.p. at day 16); and date flesh/cisplatin (DF/Cis) group (oral 600 mg/kg MDFE for 21 days and 7.5 mg/kg i.p. at day 16). Hepatic biochemical parameters in sera, and inflammatory and oxidant/antioxidant hepatic biomarkers were estimated. Hepatic histological changes and the immunohistochemistry of cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), and alpha smooth muscle actin (α-SMA) were assessed. Pretreatment with MDFE decreased Cis-triggered liver biochemical parameters, oxidative stress, inflammatory biomarkers, and histological damage. Moreover, MDFE treatment reduced Cis-induced hepatic NF-κB, COX-2, and α-SMA protein expression. MDFE exerted a hepatoprotective effect when used concomitantly with Cis. Its effect was mediated via its antioxidant and anti-inflammatory ingredients

    Targeted siRNA Delivery Using Lipid Nanoparticles

    No full text
    Efficient intracellular delivery of small-interfering ribonucleic acid (siRNA) to the target organ or tissues in the body is assumed as the main hurdle for a widespread use of siRNAs in the clinics. Solid lipid-based nanoparticles (SLNs) and derivatives can potentially fit this purpose by enabling to overcome the extracellular and intracellular physiological barriers affecting the delivery. For that, rational formulations and rational process designs are needed. This chapter addresses a comprehensive description and critical appraisal of the main production methods of this particular type of lipid nanoparticles and the leading strategies to prompt a targeted delivery of siRNA
    corecore