37,468 research outputs found
Improving information filtering via network manipulation
Recommender system is a very promising way to address the problem of
overabundant information for online users. Though the information filtering for
the online commercial systems received much attention recently, almost all of
the previous works are dedicated to design new algorithms and consider the
user-item bipartite networks as given and constant information. However, many
problems for recommender systems such as the cold-start problem (i.e. low
recommendation accuracy for the small degree items) are actually due to the
limitation of the underlying user-item bipartite networks. In this letter, we
propose a strategy to enhance the performance of the already existing
recommendation algorithms by directly manipulating the user-item bipartite
networks, namely adding some virtual connections to the networks. Numerical
analyses on two benchmark data sets, MovieLens and Netflix, show that our
method can remarkably improve the recommendation performance. Specifically, it
not only improve the recommendations accuracy (especially for the small degree
items), but also help the recommender systems generate more diverse and novel
recommendations.Comment: 6 pages, 5 figure
Integrable dispersionless KdV hierarchy with sources
An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived.
Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated.
Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is
obtained via hodograph transformation. Furthermore, the dispersionless
Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge
Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities
Throughput and per-packet delay can present strong trade-offs that are
important in the cases of delay sensitive applications.We investigate such
trade-offs using a random linear network coding scheme for one or more
receivers in single hop wireless packet erasure broadcast channels. We capture
the delay sensitivities across different types of network applications using a
class of delay metrics based on the norms of packet arrival times. With these
delay metrics, we establish a unified framework to characterize the rate and
delay requirements of applications and optimize system parameters. In the
single receiver case, we demonstrate the trade-off between average packet
delay, which we view as the inverse of throughput, and maximum ordered
inter-arrival delay for various system parameters. For a single broadcast
channel with multiple receivers having different delay constraints and feedback
delays, we jointly optimize the coding parameters and time-division scheduling
parameters at the transmitters. We formulate the optimization problem as a
Generalized Geometric Program (GGP). This approach allows the transmitters to
adjust adaptively the coding and scheduling parameters for efficient allocation
of network resources under varying delay constraints. In the case where the
receivers are served by multiple non-interfering wireless broadcast channels,
the same optimization problem is formulated as a Signomial Program, which is
NP-hard in general. We provide approximation methods using successive
formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure
- …