327 research outputs found

    Dimensional Reduction via Noncommutative Spacetime: Bootstrap and Holography

    Full text link
    Unlike noncommutative space, when space and time are noncommutative, it seems necessary to modify the usual scheme of quantum mechanics. We propose in this paper a simple generalization of the time evolution equation in quantum mechanics to incorporate the feature of a noncommutative spacetime. This equation is much more constraining than the usual Schr\"odinger equation in that the spatial dimension noncommuting with time is effectively reduced to a point in low energy. We thus call the new evolution equation the spacetime bootstrap equation, the dimensional reduction called for by this evolution seems close to what is required by the holographic principle. We will discuss several examples to demonstrate this point.Comment: 15 pages, harvmac. v2: typos corrected and some changes mad

    Macroscopic Black Holes, Microscopic Black Holes and Noncommutative Membrane

    Full text link
    We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is negative too. A surprising result is that if we are to assume the fluid be composed of some quanta, then the dispersion relation of the fundamental quantum is E=m2/kE=m^2/k, with mm at the scale of the Planck mass. There are two possible interpretation of this dispersion relation, one is the noncommutative spacetime on the stretched membrane, another is that the fundamental quantum is microscopic black holes.Comment: 10 pages, harvmac; v2: refs. adde

    Holography of Wilson-Loop Expectation Values with Local Operator Insertions

    Get PDF
    We study the expectation values of Wilson-loop operators with the insertionsof local operators Z^J and Zbar^J with large R-charge J from the bulk viewpoint of AdS/CFT correspondence. Classical solutions of strings attached to such deformed Wilson loops at the conformal boundary are constructed and are applied to the computation of Wilson-loop expectation values. We argue that in order to have such solutions for general insertions at finite positions in the base spacetime of the gauge theory, it is crucial to interpret the holographic correspondence in the semi-classical picture as a tunneling phenomenon, as has been previously established for holographic computations of correlators of BMN operators. This also requires to use the Euclideanized AdS background and Euclidean super Yang-Mills theory.Comment: 16 pages, 5 figures, version to be published in JHEP, no change from the previous version, only extraneous figure file is remove

    Generalized Conformal Symmetry and Oblique AdS/CFT Correspondence for Matrix Theory

    Get PDF
    The large N behavior of Matrix theory is discussed on the basis of the previously proposed generalized conformal symmetry. The concept of `oblique' AdS/CFT correspondence, in which the conformal symmetry involves both the space-time coordinates and the string coupling constant, is proposed. Based on the explicit predictions for two-point correlators, possible implications for the Matrix-theory conjecture are discussed.Comment: LaTeX, 10 pages, 2 figures, written version of the talk presented at Strings'9

    Cosmological perturbations and noncommutative tachyon inflation

    Full text link
    The motivation for studying the rolling tachyon and non-commutative inflation comes from string theory. In the tachyon inflation scenario, metric perturbations are created by tachyon field fluctuations during inflation. We drive the exact mode equation for scalar perturbation of the metric and investigate the cosmological perturbations in the commutative and non-commutative inflationary spacetime driven by the tachyon field which have a Born-Infeld Lagrangian.Comment: 6 two-column pages, no figur

    Generalized Conformal Symmetry in D-Brane Matrix Models

    Get PDF
    We study in detail the extension of the generalized conformal symmetry proposed previously for D-particles to the case of supersymmetric Yang-Mills matrix models of Dp-branes for arbitrary p. It is demonstrated that such a symmetry indeed exists both in the Yang-Mills theory and in the corresponding supergravity backgrounds produced by Dp-branes. On the Yang-Mills side, we derive the field-dependent special conformal transformations for the collective coordinates of Dp-branes in the one-loop approximation, and show that they coincide with the transformations on the supergravity side. These transformations are powerful in restricting the forms of the effective actions of probe D-branes in the fixed backgrounds of source D-branes. Furthermore, our formalism enables us to extend the concept of (generalized) conformal symmetry to arbitrary configurations of D-branes, which can still be used to restrict the dynamics of D-branes. For such general configurations, however, it cannot be endowed a simple classical space-time interpretation at least in the static gauge adopted in the present formulation of D-branes.Comment: 26 pages, no figure

    CMB Power Spectrum from Noncommutative Spacetime

    Full text link
    Very recent CMB data of WMAP offers an opportunity to test inflation models, in particular, the running of spectral index is quite new and can be used to rule out some models. We show that an noncommutative spacetime inflation model gives a good explanation of these new results. In fitting the data, we also obtain a relationship between the noncommutative parameter (string scale) and the ending time of inflation.Comment: 8 pages, 2 figures; v2: refs. added and minor corrections; v3: further minor correctio
    • …
    corecore