We study the stretched membrane of a black hole as consisting of a perfect
fluid. We find that the pressure of this fluid is negative and the specific
heat is negative too. A surprising result is that if we are to assume the fluid
be composed of some quanta, then the dispersion relation of the fundamental
quantum is E=m2/k, with m at the scale of the Planck mass. There are two
possible interpretation of this dispersion relation, one is the noncommutative
spacetime on the stretched membrane, another is that the fundamental quantum is
microscopic black holes.Comment: 10 pages, harvmac; v2: refs. adde