125 research outputs found

    Exact exchange potential evaluated solely from occupied Kohn-Sham and Hartree-Fock solutions

    Full text link
    The reported new algorithm determines the exact exchange potential v_x in a iterative way using energy and orbital shifts (ES, OS) obtained - with finite-difference formulas - from the solutions (occupied orbitals and their energies) of the Hartree-Fock-like equation and the Kohn-Sham-like equation, the former used for the initial approximation to v_x and the latter - for increments of ES and OS due to subsequent changes of v_x. Thus, solution of the differential equations for OS, used by Kummel and Perdew (KP) [Phys. Rev. Lett. 90, 043004 (2003)], is avoided. The iterated exchange potential, expressed in terms of ES and OS, is improved by modifying ES at odd iteration steps and OS at even steps. The modification formulas are related to the OEP equation (satisfied at convergence) written as the condition of vanishing density shift (DS) - they are obtained, respectively, by enforcing its satisfaction through corrections to approximate OS and by determining optimal ES that minimize the DS norm. The proposed method, successfully tested for several closed-(sub)shell atoms, from Be to Kr, within the DFT exchange-only approximation, proves highly efficient. The calculations using pseudospectral method for representing orbitals give iterative sequences of approximate exchange potentials (starting with the Krieger-Li-Iafrate approximation) that rapidly approach the exact v_x so that, for Ne, Ar and Zn, the corresponding DS norm becomes less than 10^{-6} after 13, 13 and 9 iteration steps for a given electron density. In self-consistent density calculations, orbital energies of 10^{-4} Hartree accuracy are obtained for these atoms after, respectively, 9, 12 and 12 density iteration steps, each involving just 2 steps of v_x iteration, while the accuracy limit of 10^{-6}--10^{-7} Hartree is reached after 20 density iterations.Comment: 21 pages, 5 figures, 3 table

    Nonuniqueness of the Potentials of Spin-Density-Functional Theory

    Get PDF
    It is shown that, contrary to widely held beliefs, the potentials of spin-density-functional theory (SDFT) are not unique functionals of the spin densities. Explicit examples of distinct sets of potentials with the same ground-state densities are constructed, and general arguments that uniqueness should not occur in SDFT and other generalized density-functional theories are given. As a consequence, various types of applications of SDFT require significant corrections or modifications.Comment: 4 pages, no figure

    Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields

    Get PDF
    Using a Hartree-Fock mesh method and a configuration interaction approach based on a generalized Gaussian basis set we investigate the behaviour of the exchange and correlation energies of small atoms and molecules, namely th e helium and lithium atom as well as the hydrogen molecule, in the presence of a magnetic field covering the regime B=0-100a.u. In general the importance of the exchange energy to the binding properties of at oms or molecules increases strongly with increasing field strength. This is due to the spin-flip transitions and in particular due to the contributions of the tightly bound hydrogenic state s which are involved in the corresponding ground states of different symmetries. In contrast to the exchange energy the correlation energy becomes less relevant with increasing field strength. This holds for the individual configurations constituting the ground state and for the crossovers of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.

    Many-body correlations probed by plasmon-enhanced drag measurements in double quantum well structures

    Full text link
    Electron drag measurements of electron-electron scattering rates performed close to the Fermi temperature are reported. While evidence of an enhancement due to plasmons, as was recently predicted [K. Flensberg and B. Y.-K. Hu, Phys. Rev. Lett. 73, 3572 (1994)], is found, important differences with the random-phase approximation based calculations are observed. Although static correlation effects likely account for part of this difference, it is argued that correlation-induced multiparticle excitations must be included to account for the magnitude of the rates and observed density dependences.Comment: 4 pages, 3 figures, revtex Accepted in Phys. Rev.

    Correlation energies of inhomogeneous many-electron systems

    Full text link
    We generalize the uniform-gas correlation energy formalism of Singwi, Tosi, Land and Sjolander to the case of an arbitrary inhomogeneous many-particle system. For jellium slabs of finite thickness with a self-consistent LDA groundstate Kohn-Sham potential as input, our numerical results for the correlation energy agree well with diffusion Monte Carlo results. For a helium atom we also obtain a good correlation energy.Comment: 4 pages,1 figur

    Positron and positronium affinities in the work-formalism Hartree-Fock approximation

    Full text link
    Positron binding to anions is investigated within the work formalism proposed by Harbola and Sahni for the halide anions and the systems Li^- through O^- excluding Be^- and N^-. The toal ground-state energies of the anion-positron bound systems are empirically found to be an upper bound to the Hartree-Fock energies. The computed expectation values as well as positron and positronium affinities are in good agreement with their restricted Hartree-Fock counterparts. Binding of a positron to neutral species is also investigated using an iterative method.Comment: 12 pages, to appear in Physical Review

    Dynamic correlations of the Coulomb Luttinger liquid

    Full text link
    The dynamic density response function, form-factor, and spectral function of a Luttinger liquid with Coulomb electron-electron interaction are studied with the emphasis on the short-range electron correlations. The Coulomb interaction changes dramatically the density response function as compared to the case of the short-ranged interaction. The form of the density response function is smoothing with time, and the oscillatory structure appears. However, the spectral functions remain qualitatively the same. The dynamic form-factor contains the δ\delta-peak in the long-wave region, corresponding to one-boson excitations. Besides, the multi-boson-excitations band exists in the wave-number region near to 2kF2k_F. The dynamic form-factor diverges at the edges of this band, while the dielectric function goes to zero there, which indicates the appearance of a soft mode. We develop a method to analyze the asymptotics of the spectral functions near to the edges of the multi-boson-excitations band.Comment: 11 pages, 3 figures, submitted to PR

    Dynamic correlations in symmetric electron-electron and electron-hole bilayers

    Full text link
    The ground-state behavior of the symmetric electron-electron and electron-hole bilayers is studied by including dynamic correlation effects within the quantum version of Singwi, Tosi, Land, and Sjolander (qSTLS) theory. The static pair-correlation functions, the local-field correction factors, and the ground-state energy are calculated over a wide range of carrier density and layer spacing. The possibility of a phase transition into a density-modulated ground state is also investigated. Results for both the electron-electron and electron-hole bilayers are compared with those of recent diffusion Monte Carlo (DMC) simulation studies. We find that the qSTLS results differ markedly from those of the conventional STLS approach and compare in the overall more favorably with the DMC predictions. An important result is that the qSTLS theory signals a phase transition from the liquid to the coupled Wigner crystal ground state, in both the electron-electron and electron-hole bilayers, below a critical density and in the close proximity of layers (d <~ r_sa_0^*), in qualitative agreement with the findings of the DMC simulations.Comment: 13 pages, 11 figures, 2 table
    • …
    corecore