348 research outputs found

    Small vessel vasculitis and dry gangrene secondary to combined CTLA-4 and PD-1 blockade in malignant mesothelioma.

    Get PDF
    BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare and aggressive tumour with an overall poor prognosis. In October 2020, first line treatment with the PD-1 antagonist nivolumab and the CTLA-4 antagonist ipilimumab for unresectable disease was FDA approved-the first approved treatment regime since 2004. Interim analyses from the phase 3 CHECKMATE-743 study shows improvements in overall survival. Skin-related toxicities are the most commonly reported any-grade treatment-related adverse event from combined nivolumab and ipilimumab therapy. CASE PRESENTATION: Here we report a case of a 35-year-old white male who developed digital ischaemia secondary to small vessel vasculitis after receiving PD-1 and CTLA-4 blockade therapy for MPM. His progressive ischaemia became gangrenous, and he required multi-speciality input and treatment with prednisolone, prostacyclin, mycophenolate mofetil and hydroxychloroquine. CONCLUSIONS: Our case highlights the importance of early detection, intervention, and a multispecialty approach to managing such complications in order to minimise the associated morbidity and mortality

    Optimizing arginine deprivation for hard-to-treat cancers.

    Get PDF

    Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1

    Get PDF
    This work was supported by funding from the British Lung Foundation (APG12-10 and MESO15-12), the June Hancock Mesothelioma Research Fund, and Cancer Research UK (C16420/A18066). E.G. acknowledges research funding from the Barry Reed Cancer Research Fund

    Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells.

    Get PDF
    BACKGROUND: Loss of function of fumarate hydratase (FH), the mitochondrial tumor suppressor and tricarboxylic acid (TCA) cycle enzyme, is associated with a highly malignant form of papillary and collecting duct renal cell cancer. The accumulation of fumarate in these cells has been linked to the tumorigenic process. However, little is known about the overall effects of the loss of FH on cellular metabolism. METHODS: We performed comprehensive metabolomic analyses of urine from Fh1-deficient mice and stable isotopologue tracing from human and mouse FH-deficient cell lines to investigate the biochemical signature of the loss of FH. RESULTS: The metabolomics analysis revealed that the urea cycle metabolite argininosuccinate is a common metabolic biomarker of FH deficiency. Argininosuccinate was found to be produced from arginine and fumarate by the reverse activity of the urea cycle enzyme argininosuccinate lyase (ASL), making these cells auxotrophic for arginine. Depleting arginine from the growth media by the addition of pegylated arginine deiminase (ADI-PEG 20) decreased the production of argininosuccinate in FH-deficient cells and reduced cell survival and proliferation. CONCLUSIONS: These results unravel a previously unidentified correlation between fumarate accumulation and the urea cycle enzyme ASL in FH-deficient cells. The finding that FH-deficient cells become auxotrophic for arginine opens a new therapeutic perspective for the cure of hereditary leiomyomatosis and renal cell cancer (HLRCC).RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A Phase 1 study of ADI-PEG20 (pegargiminase) combined with cisplatin and pemetrexed in ASS1-negative metastatic uveal melanoma

    Get PDF
    Metastatic uveal melanoma (UM) is a devastating disease with few treatment options. We evaluated the safety, tolerability and preliminary activity of arginine depletion using pegylated arginine deiminase (ADI‐PEG20; pegargiminase) combined with pemetrexed (Pem) and cisplatin (Cis) chemotherapy in a phase 1 dose‐expansion study of patients with argininosuccinate synthetase (ASS1)‐deficient metastatic UM. Eligible patients received up to six cycles of Pem (500 mg/m(2)) and Cis (75 mg/m(2)) every 3 weeks plus weekly intramuscular ADI (36 mg/m(2)), followed by maintenance ADI until progression (NCT02029690). Ten of fourteen ASS1‐deficient patients with UM liver metastases and a median of one line of prior immunotherapy received ADIPemCis. Only one ≄ grade 3 adverse event of febrile neutropenia was reported. Seven patients had stable disease with a median progression‐free survival of 3.0 months (range, 1.3–8.1) and a median overall survival of 11.5 months (range, 3.2–36.9). Despite anti‐ADI‐PEG20 antibody emergence, plasma arginine concentrations remained suppressed by 18 weeks with a reciprocal increase in plasma citrulline. Tumour rebiopsies at progression revealed ASS1 re‐expression as an escape mechanism. ADIPemCis was well tolerated with modest disease stabilisation in metastatic UM. Further investigation of arginine deprivation is indicated in UM including combinations with immune checkpoint blockade and additional anti‐metabolite strategies

    Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20).

    Get PDF
    The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours.Thanks to Dr John Bomalaski, (Polaris Pharmaceuticals, Inc) for supplying the ADI-PEG20, to Dr Simon S Hoer for useful discussions and to members of Histopathology/ISH (CRUK Cambridge Institute, UK) for IHC and imaging assistance. This work was supported by the Wellcome Trust and the NIHR Cambridge Biomedical Research Centre Senior Investigator Awards (to P.H.M., supporting N.B.), EU FP7 Metoxia Grant agreement no. 222741 (to P.H.M., supporting G.C.), UCL Cancer Research UK Centre (to M.R.), King’s College London and UCL Comprehensive Cancer Imaging Centre, Cancer Research UK and EPSRC in association with the Medical Research Council (MRC), the DoH (England: to R.B.P.), MRC Cancer Unit Core Funding (to C.F., supporting E.G.).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2295

    Staging Uveal Melanoma with Whole-Body Positron-Emission Tomography/Computed Tomography and Abdominal Ultrasound: Low Incidence of Metastatic Disease, High Incidence of Second Primary Cancers

    Get PDF
    PURPOSE: The purpose of this study was to report the results of staging primary uveal melanoma with whole-body (18) fluorodeoxyglucose (FDG) positron-emission tomography/computed tomography (PET/CT) and abdominal ultrasound. MATERIALS AND METHODS: From January 2012, patients with uveal melanoma over 4 mm in thickness were staged with FDG PET/CT and abdominal ultrasound. RESULTS: Over 2 years, 108 patients with medium-to-large melanoma underwent dual imaging. According to the tumor, node, and metastasis classification, there were 75% T3, 11% T2, and 14% T1 uveal melanomas. Only, three of 108 patients (2.8%) were found to have metastatic uveal melanoma. All three had liver metastases confirmed following biopsy; one of three had additional extrahepatic widespread metastases. In these three patients, liver findings using both imaging techniques were consistent in one patient. In the second case, abdominal ultrasound missed the diagnosis of metastatic disease; however, FDG PET/CT revealed intense metabolic activity of the liver. In the third case, PET/CT missed the liver metastases; however, this was identified on abdominal ultrasound. PET/CT identified incidental second primary malignancies in 10 patients (9%). Second malignancies were found in the lung, breast, colon, thyroid, and adrenal gland. Abdominal ultrasound detected benign hepatic abnormalities in 20 patients (18%). CONCLUSIONS: Whole-body PET/CT and abdominal ultrasound complement each other in the staging of uveal melanoma. Benign hepatic abnormalities found using ultrasound is common. Of importance, a second asymptomatic primary malignancy associated with uveal melanoma was detected almost one in 10 patients

    Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma.

    Get PDF
    Arginine deprivation, either by nutritional starvation or exposure to ADI-PEG20, induces adaptive transcriptional upregulation of ASS1 and ASL in glioblastoma multiforme ex vivo cultures and cell lines. This adaptive transcriptional upregulation is blocked by neoplasia-specific CpG island methylation in either gene, causing arginine auxotrophy and cell death. In cells with methylated ASS1 or ASL CpG islands, ADI-PEG20 initially induces a protective autophagic response, but abrogation of this by chloroquine accelerates and potentiates cytotoxicity. Concomitant methylation in the CpG islands of both ASS1 and ASL, observed in a subset of cases, confers hypersensitivity to ADI-PEG20. Cancer stem cells positive for CD133 and methylation in the ASL CpG island retain sensitivity to ADI-PEG20. Our results show for the first time that epigenetic changes occur in both of the two key genes of arginine biosynthesis in human cancer and confer sensitivity to therapeutic arginine deprivation. We demonstrate that methylation status of the CpG islands, rather than expression levels per se of the genes, predicts sensitivity to arginine deprivation. Our results suggest a novel therapeutic strategy for this invariably fatal central nervous system neoplasm for which we have identified robust biomarkers and which overcomes the limitations to conventional chemotherapy imposed by the blood/brain barrier

    Phase II Study of Arginine Deprivation Therapy With Pegargiminase in Patients With Relapsed Sensitive or Refractory Small-cell Lung Cancer.

    Get PDF
    BACKGROUND: Pre-clinical studies indicated that arginine-deprivation therapy using pegylated arginine deiminase (pegargiminase, ADI-PEG 20) may be effective in patients with argininosuccinate synthetase 1 (ASS1)-deficient small-cell lung cancer (SCLC). PATIENTS AND METHODS: Patients were enrolled into either a 'sensitive' disease cohort (≄ 90 days response to first-line chemotherapy) or a 'refractory' disease cohort (progression while on chemotherapy or < 90 days afterwards or ≄ third-line treatment). Patients received weekly intramuscular pegargiminase, 320 IU/m2 (36.8 mg/m2), until unacceptable toxicity or disease progression. The primary endpoint was tumor response assessed by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 with secondary endpoints including tolerability, pharmacodynamics, and immunogenicity. RESULTS: Between January 2011 and January 2014, 22 patients were enrolled: 9 in the sensitive disease cohort and 13 in the refractory disease cohort. At a pre-planned interim analysis, the best overall response observed was stable disease in 2 patients in each cohort (18.2%). Owing to the lack of response and slow accrual in the sensitive disease cohort, the study was terminated early. Pegargiminase treatment was well-tolerated with no unexpected adverse events or discontinuations. CONCLUSION: Although pegargiminase monotherapy in SCLC failed to meet its primary endpoint of RECIST-confirmed responses, more recent molecular stratification, including MYC status, may provide new opportunities moving forward

    A Phase 1 Study of ADI-PEG20 (Pegargiminase) Combined with Cisplatin and Pemetrexed in ASS1-Negative Metastatic Uveal Melanoma

    Get PDF
    Metastatic uveal melanoma (UM) is a devastating disease with few treatment options. We evaluated the safety, tolerability and preliminary activity of arginine depletion using pegylated arginine deiminase (ADI-PEG20; pegargiminase) combined with pemetrexed (Pem) and cisplatin (Cis) chemotherapy in a phase 1 dose-expansion study of patients with argininosuccinate synthetase (ASS1)-deficient metastatic UM. Eligible patients received up to six cycles of Pem (500 mg/m2 ) and Cis (75 mg/m2 ) every three weeks plus weekly intramuscular ADI (36 mg/m2 ), followed by maintenance ADI until progression (NCT02029690). Ten of fourteen ASS1-deficient patients with UM liver metastases and a median of one line of prior immunotherapy received ADIPemCis. Only one ≄ grade 3 adverse event of febrile neutropenia was reported. Seven patients had stable disease with a median progression-free survival of 3.0 months (range, 1.3-8.1) and a median overall survival of 11.5 months (range, 3.2-36.9). Despite anti-ADI-PEG20 antibody emergence, plasma arginine concentrations remained suppressed by 18 weeks with a reciprocal increase in plasma citrulline. Tumour rebiopsies at progression revealed ASS1 re-expression as an escape mechanism. ADIPemCis was well tolerated with modest disease stabilisation in metastatic UM. Further investigation of arginine deprivation is indicated in UM including combinations with immune checkpoint blockade and additional antimetabolite strategies
    • 

    corecore