38 research outputs found

    Abnormal Repolarization as the Basis for Late Potentials and Fractionated Electrograms Recorded From Epicardium in Experimental Models of Brugada Syndrome

    Get PDF
    ObjectivesThe aim of this study was to test the hypothesis that late potentials and fractionated electrogram activity are due to delayed depolarization within the anterior aspects of right ventricular (RV) epicardium in experimental models of Brugada syndrome (BrS).BackgroundClinical reports have demonstrated late potentials on signal-averaged electrocardiography (ECG) recorded in patients with BrS. Recent studies report the appearance of late potentials and fractionated activity on bipolar electrograms recorded in the epicardium of the RV outflow tract in patients with BrS.MethodsAction potential and bipolar electrograms were recorded at epicardial and endocardial sites of coronary-perfused canine RV wedge preparations, together with a pseudo-ECG. The transient outward potassium current agonist NS5806 (5 μM) and the Ca2+-channel blocker verapamil (2 μM) were used to pharmacologically mimic the BrS genetic defect.ResultsFractionated electrical activity was observed in RV epicardium, but not in endocardium, as a consequence of heterogeneities in the appearance of the second upstroke of the epicardial action potential, and discrete high-frequency spikes developed as a result of concealed phase 2 re-entry. In no case did we observe primary conduction delay as the cause of the BrS ECG phenotype or of late potential or fractionated electrogram activity. Quinidine (10 μM) and the phosphodiesterase-3 inhibitors cilostazol (10 μM) and milrinone (2.5 μM) restored electrical homogeneity, thus abolishing all late potentials and fractionated electrical activity.ConclusionsThese data point to an alternative pathophysiological basis for late potentials and fractionated electrical activity recorded in the right ventricle in the setting of BrS. We demonstrate an association of such activity with abnormal repolarization and not with abnormal depolarization or structural abnormalities

    Diclofenac Prolongs Repolarization in Ventricular Muscle with Impaired Repolarization Reserve

    Get PDF
    Background: The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti- inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle. Methods: Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was investigated in an anaesthetized rabbit proarrhythmia model. Results: Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac (20 mM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was observed when repolarization reserve was impaired by previous BaCl 2 application. Diclofenac (3 mg/kg) did not prolong while dofetilide (25 mg/kg) significantly lengthened the QT c interval in anaesthetized rabbits. The addition of diclofenac following reduction of repolarization reserve by dofetilide further prolonged QT c . Diclofenac alone did not induce Torsades de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 mM) decreased the amplitude of rapid (I Kr ) and slow (I Ks ) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium current (I Ca ) was slightly diminished, but the transient outward (I to ) and inward rectifier (I K1 ) potassium currents were not influenced. Conclusions: Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve
    corecore