431 research outputs found

    The Solar Flare Iron Abundance

    Full text link
    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in {\em RHESSI} X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz. an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe)=7.91±0.10A({\rm Fe}) = 7.91 \pm 0.10 (on a logarithmic scale, with A(H)=12A({\rm H}) = 12), or 2.6±0.62.6 \pm 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1,898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe)A({\rm Fe}) has important implications for radiation loss curves, which are estimated.Comment: Accepted by Astrophysical Journa

    Noxious and other bad weeds of Iowa

    Get PDF
    Within the past 15 years weeds have come to be recognized as the cause of one of the most important losses suffered by American farmers. Experiment station and extension workers, farmers, weed commissioners, insurance companies and farm credit agencies, chambers of commerce and others either directly or indirectly dependent on agriculture have become aroused by the menace of an increased dissemination of noxious weeds. In Iowa weeds cause a loss of many millions of dollars annually. They crowd out desirable crops, rob them of plant food and moisture, act as hosts for insects and disease-producing organisms of crops, poison or injure livestock, depreciate land values and cause extra labor in cultivation; thus they increase the cost of food production

    Our Iowa Weed Laws

    Get PDF
    If all of us were good stewards of our land, we wouldn\u27t need weed laws. But experience has shown that we do need them, and the state legislature has provided them. Here\u27s how they work

    Non-Equilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind \textit{(Invited Review)}

    Full text link
    We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distributions are described together with their influence on the heat flux as well as on the rates of individual collisional processes and the resulting optically thin synthetic spectra. Constraints on the presence of high-energy electrons from observations are reviewed, including positive detection of non-Maxwellian distributions in the solar corona, transition region, flares, and wind. Occurrence of non-equilibrium ionization is reviewed as well, especially in connection to hydrodynamic and generalized collisional-radiative modelling. Predicted spectroscopic signatures of non-equilibrium ionization depending on the assumed plasma conditions are summarized. Finally, we discuss the future remote-sensing instrumentation that can be used for detection of these non-equilibrium phenomena in various spectral ranges.Comment: Solar Physics, accepte

    Detailed diagnostics of an X-ray flare in the single giant HR 9024

    Get PDF
    We analyze a 96 ks Chandra/HETGS observation of the single G-type giant HR 9024. The high flux allows us to examine spectral line and continuum diagnostics at high temporal resolution, to derive plasma parameters. A time-dependent 1D hydrodynamic model of a loop with half-length L=5×1011L = 5 \times 10^{11} cm (R/2\sim R_{\star}/2), cross-section radius r=4.3×1010r = 4.3 \times 10^{10} cm, with a heat pulse of 15 ks and 2×10112 \times 10^{11}~erg cm2^{-2} s1^{-1} deposited at the loop footpoints, satisfactorily reproduces the observed evolution of temperature and emission measure, derived from the analysis of the strong continuum emission. For the first time we can compare predictions from the hydrodynamic model with single spectral features, other than with global spectral properties. We find that the model closely matches the observed line emission, especially for the hot (108\sim 10^8 K) plasma emission of the FeXXV complex at 1.85\sim 1.85\AA. The model loop has L/R1/2L/R_{\star} \sim 1/2 and aspect ratio r/L0.1r/L \sim 0.1 as typically derived for flares observed in active stellar coronae, suggesting that the underlying physics is the same for these very dynamic and extreme phenomena in stellar coronae independently on stellar parameters and evolutionary stage.Comment: 26 pages. Accepted for publication on the Astrophysical Journa
    corecore