194 research outputs found

    Being in Another World: Transcultural Student Experiences Using Service Learning With Families Who Are Homeless

    Get PDF
    Developing skills in cultural competence is a recognized theoretical strategy in schools of nursing. Nursing faculty know that students need to be sensitized to the concept of diversity; however, many are struggling with the best way to teach cultural competence. This article describes transcultural experiences from service learning clinical rotations at a family homeless shelter, described by students as being in another world. Student narratives provide valuable information about structuring clinical learning activities to promote understanding of cultural differences and similarities. Clinical experiences using a traditional model versus those using service learning, the role of reflection, and teaching strategies promoting transcultural learning through service learning are explored

    Discovery of Five New Pulsars in Archival Data

    Get PDF
    Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of five previously unknown pulsars and several as-yet-unconfirmed candidates. PSR J0922-52 has a period of 9.68 ms and a DM of 122.4 pc cm^-3. PSR J1147-66 has a period of 3.72 ms and a DM of 133.8 pc cm^-3. PSR J1227-6208 has a period of 34.53 ms, a DM of 362.6 pc cm^-3, is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein@Home volunteers. PSR J1546-59 has a period of 7.80 ms and a DM of 168.3 pc cm^-3. PSR J1725-3853 is an isolated 4.79-ms pulsar with a DM of 158.2 pc cm^-3. These pulsars were likely missed in earlier processing efforts due to their high DMs and short periods and the large number of candidates that needed to be looked through. These discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.Comment: 12 pages, 2 figures, 2 tables, accepted to Ap

    A Pilot Study of Nulling in 22 Pulsars Using Mixture Modeling

    Full text link
    The phenomenon of pulsar nulling, observed as the temporary inactivity of a pulsar, remains poorly understood both observationally and theoretically. Most observational studies that quantify nulling employ a variant of Ritchings (1976)'s algorithm which can suffer significant biases for pulsars where the emission is weak. Using a more robust mixture model method, we study pulsar nulling in a sample of 22 recently discovered pulsars, for which we publish the nulling fractions for the first time. These data clearly demonstrate biases of the former approach and show how an otherwise non-nulling pulsar can be classified as having significant nulls. We show that the population-wide studies that find a positive correlation of nulling with pulsar period/characteristic age can similarly be biased because of the bias in estimating the nulling fraction. We use our probabilistic approach to find the evidence for periodicity in the nulls in a subset of three pulsars in our sample. In addition, we also provide improved timing parameters for 17 of the 22 pulsars that had no prior follow-up.Comment: Accepted for publication in the Astrophysical Journal (ApJ

    Arecibo Pulsar Survey Using ALFA. III. Precursor Survey and Population Synthesis

    Get PDF
    The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo (32° ℓ 77° and 168° ℓ 214°) close to the Galactic plane (|b| 5°) for pulsars. The PALFA survey is sensitive to sources fainter and more distant than have previously been seen because of Arecibo\u27s unrivaled sensitivity. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in ℓ and |b| 1°) and detected 45 pulsars. Detections included 1 known millisecond pulsar and 11 previously unknown, long-period pulsars. In the surveyed part of the sky that overlaps with the Parkes Multibeam Pulsar Survey (36° ℓ 50°), PALFA is probing deeper than the Parkes survey, with four discoveries in this region. For both Galactic millisecond and normal pulsar populations, we compare the survey\u27s detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each case (107,000 and 15,000 for normal and millisecond pulsars, respectively), we extend survey detection simulations to predict that, when complete, the full PALFA survey should have detected normal pulsars and millisecond pulsars. Identical estimation techniques predict that normal pulsars and millisecond pulsars would be detected by the beginning of 2014; at the time, the PALFA survey had detected 283 normal pulsars and 31 millisecond pulsars, respectively. We attribute the deficiency in normal pulsar detections predominantly to the radio frequency interference environment at Arecibo and perhaps also scintillation—both effects that are currently not accounted for in population simulation models

    The International Pulsar Timing Array: First Data Release

    Get PDF
    The highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such \u27pulsar timing arrays\u27 (PTAs) have been set up around the world over the past decades and collectively form the \u27International\u27 PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available on-line) is used to demonstrate the IPTA\u27s potential of improving upon gravitational-wave limit

    Discovery and Follow-up of Rotating Radio Transients with the Green Bank and LOFAR Telescopes

    Get PDF
    We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {\tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm−3^{-3}, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr−1^{-1} at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. P>200P>200 ms) are preferentially more likely to emit bright single pulses than are faster pulsars (P<200P<200 ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.Comment: 18 pages, 13 figures, 5 tables, published in Ap
    • …
    corecore